

Appendix 5 – Long Term Fauna Monitoring Program



# **Baseline Monitoring of Rehabilitation Programs**

# **Alcoa's Bauxite Mining Areas**

Prepared for: Alcoa of Australia Ltd

Version 1. June, 2023







#### **RECORD OF DISTRIBUTION**

| No. of<br>copies | Report File Name    | Report<br>Status | Date          | Prepared for:          | Initials |
|------------------|---------------------|------------------|---------------|------------------------|----------|
| Electronic       | 2022-0087-002-GT V1 | DRAFT            | 20 March 2023 | Alcoa of Australia Ltd | GT       |
| Electronic       | 2022-0087-002-GT V1 | FINAL            | 6 June 2023   | Alcoa of Australia Ltd | GT       |
|                  |                     |                  |               |                        |          |
|                  |                     |                  |               |                        |          |
|                  |                     |                  |               |                        |          |
|                  |                     |                  |               |                        |          |

**Suggested Citation**: Terrestrial Ecosystems 2023 *Baseline Monitoring of Rehabilitation Programs in Alcoa's Bauxite Mining Areas*, Unpublished report for Alcoa, Perth.

| Prepared For: | Alcoa of Australia Ltd<br>PO Box 172<br>Pinjarra WA 6208           |
|---------------|--------------------------------------------------------------------|
| Prepared By:  | Terrestrial Ecosystems<br>10 Houston Place<br>Mt Claremont WA 6010 |
|               | Phone: 08 9385 2398, 0407 385 289                                  |
|               | Website: www.terrestrialecosystems.com<br>ABN: 40921131346         |

#### DISCLAIMER

This document is prepared in accordance with and subject to an agreement between G & S Thompson Pty Ltd as Trustee for the Thompson Family Trust trading as Terrestrial Ecosystems and the client, Alcoa of Australia Ltd. It has been prepared and is restricted to those issues that have been raised by the client in its engagement of Terrestrial Ecosystems and prepared using the standard of skill and care ordinarily exercised by environmental scientists in the preparation of such reports.

Persons or agencies that rely on or use this document for purposes or reasons other than those agreed by Terrestrial Ecosystems and its client without first obtaining prior consent, do so at their own risk and Terrestrial Ecosystems denies all liability in tort, contract or otherwise for any loss, damage or injury of any kind whatsoever (whether in negligence or otherwise) that may be suffered as a consequence.



#### **REPORT CONTENTS**

#### **EXECUTIVE SUMMARY**

| 1. | INTRO | DDUCTION                                             | 1  |
|----|-------|------------------------------------------------------|----|
|    | 1.1   | Background                                           | 1  |
|    | 1.2   | Succession                                           | 1  |
|    | 1.3   | Objective                                            | 3  |
| 2. | METH  | IODS                                                 | 4  |
|    | 2.1   | Pit-trapping program                                 | 4  |
|    | 2.2   | Cage trapping program                                | 4  |
|    | 2.3   | Camera traps                                         | 5  |
|    | 2.4   | Invertebrate sampling                                | 5  |
|    | 2.5   | Data analysis                                        | 6  |
|    | 2.5.1 | Principal component analysis                         | 6  |
|    | 2.5.2 | Similarity                                           | 6  |
|    | 2.5.3 | Species richness and relative abundance              | 6  |
|    | 2.5.4 | Evenness                                             | 7  |
|    | 2.5.5 | Diversity                                            | 7  |
| 3. | RESUI | LTS                                                  | 8  |
|    | 3.1   | Similarity among survey sites                        | 11 |
|    | 3.2   | Species abundance and diversity                      | 12 |
| 4. | DISCU | JSSION                                               | 14 |
|    | 4.1   | Pit, funnel and aluminium box traps                  | 14 |
|    | 4.2   | Trap types                                           | 15 |
|    | 4.3   | Cage traps                                           | 15 |
|    | 4.4   | Camera traps                                         | 15 |
|    | 4.5   | Conservation significant species                     | 16 |
|    | 4.6   | Pest and predator species                            |    |
| 5. | SUMN  | MARY AND CONCLUSIONS                                 | 18 |
|    | 5.1   | Succession and on target to a climax fauna community | 18 |
|    | 5.2   | Conservation significant species                     |    |
|    | 5.3   | Pest species                                         |    |
|    | 5.4   | Repeating this survey                                |    |
| 6. | REFER | RENCES                                               | 20 |



# LIST OF CHARTS

| Chart 1. PCAs 1 | I and 2 | 12 |
|-----------------|---------|----|
| Chart 2. PCAs 1 | I and 3 | 12 |

# LIST OF PLATES

| Plate 1. Conceptual diagram of primary succession                 | 1  |
|-------------------------------------------------------------------|----|
| Plate 2. Primary succession trajectory(taken from: Bradshaw 1984) | 2  |
| Plate 3. Trapping site layout                                     | 4  |
| Plate 4. Baited cage trap                                         | 5  |
| Plate 5. Non-reward lure                                          | 5  |
| Plate 6. Mounted camera trap                                      | 5  |
| Plate 7. Carpet python                                            | 9  |
| Plate 8. Mardo                                                    | 14 |
| Plate 9. Western pygmy possum                                     | 14 |
| Plate 10. Chuditch                                                | 16 |
| Plate 11. Quokkas                                                 | 16 |
| Plate 12. Western Brush Wallaby                                   | 16 |
| Plate 13. Quenda                                                  | 16 |
| Plate 14. Feral cat                                               | 17 |
| Plate 15. Pig with ear tag                                        | 17 |
| Plate 16. Site 1 unmined                                          | 25 |
| Plate 17. Site 1 unmined                                          | 25 |
| Plate 18. Site 2 unmined                                          | 25 |
| Plate 19. Site 2 unmined                                          | 25 |
| Plate 20. Site 3 unmined                                          | 25 |
| Plate 21. Site 3 unmined                                          | 25 |
| Plate 22. Site 4 10-year rehabilitation                           | 26 |
| Plate 23. Site 4 10-year rehabilitation                           | 26 |
| Plate 24. Site 5 10-year rehabilitation                           | 26 |
| Plate 25. Site 5 10-year rehabilitation                           | 26 |
| Plate 26. Site 6 10-year rehabilitation                           | 26 |
| Plate 27. Site 6 10-year rehabilitation                           | 26 |
| Plate 28. Site 7 15-year rehabilitation                           | 27 |
| Plate 29. Site 7 15-year rehabilitation                           | 27 |
| Plate 30. Site 8 15-year rehabilitation                           | 27 |
| Plate 31. Site8 15-year rehabilitation                            | 27 |
| Plate 32. Site 9 5-year rehabilitation                            | 27 |
| Plate 33. Site 9 5-year rehabilitation                            | 27 |
| Plate 34. Site 10 5-year rehabilitation                           | 28 |
| Plate 35. Site 10 5-year rehabilitation                           | 28 |
| Plate 36. Site 10 5-year rehabilitation                           |    |



| Plate 37. Site 10 5-year rehabilitation  | 28 |
|------------------------------------------|----|
| Plate 38. Site 10 15-year rehabilitation | 28 |
| Plate 39. Site 10 15-year rehabilitation |    |
| Thate 55. Site to 15 year renabilitation | 20 |

#### **LIST OF TABLES**

| Table 1. Trapping data results                               | 8  |
|--------------------------------------------------------------|----|
| Table 2. Fauna caught in a cage traps                        | 9  |
| Table 3. Vertebrate fauna recorded by trap type              | 10 |
| Table 4. Camera trap results                                 | 11 |
| Table 5. Percent variance and eigenvalues for the PCA        | 11 |
| Table 6. Morisita-Horn index for 12 sites                    | 12 |
| Table 7. Diversity and abundance index scores                | 13 |
| Table 8. Trap site coordinates and opening and closing dates | 30 |

#### **LIST OF FIGURES**

Figure 1. Regional location

- Figure 2. Project area
- Figure 3. Pit trap locations Trap site 1
- Figure 4. Pit trap locations Trap site 2
- Figure 5. Pit trap locations Trap site 3
- Figure 6. Pit trap locations Trap site 4
- Figure 7. Pit trap locations Trap site 5
- Figure 8. Pit trap locations Trap site 6
- Figure 9. Pit trap locations Trap site 7
- Figure 10. Pit trap locations Trap site 8
- Figure 11. Pit trap locations Trap site 9
- Figure 12. Pit trap locations Trap site 10
- Figure 13. Pit trap locations Trap site 11
- Figure 14. Pit trap locations Trap site 12
- Figure 15. Camera trap location site 1
- Figure 16. Camera trap location site 2
- Figure 17. Camera trap location site 3
- Figure 18. Cage traps Site 1
- Figure 19. Cage traps Site 2
- Figure 20. Cage traps Site 3
- Figure 21. Cage traps Site 4



# LIST OF APPENDICES

Appendix A. Images of trapping sites

Appendix B. Trapping site coordinates

Appendix C. Vertebrate Fauna Recorded in Biological Surveys in the Region



# **EXECUTIVE SUMMARY**

Alcoa of Australia Ltd (Alcoa) operates bauxites mines in the Huntly and Willowdale areas east of Pinjarra in the Western Australian Jarrah Forest. Alcoa is progressively rehabilitating mined areas once the local resources have been exhausted. The primary objective of Alcoa's bauxite mine rehabilitation program is to return a self-sustaining Jarrah Forest ecosystem after mining. This includes re-establishing populations of all faunal groups and species in densities and distributions required for maintaining forest biodiversity and ecosystem function.

Alcoa has established 12 long-term monitoring sites for vertebrate fauna. Three of the sites are in unmined habitat, and three of the sites are in areas rehabilitated 5, 10 and 15 years ago. It is proposed that the vertebrate fauna at these sites would be periodically monitored (e.g. every 5 years) to enable judgements to be made about the extent to which rehabilitated areas were progressing on a trajectory towards the recreation of functional ecosystems, as determined by the terrestrial vertebrate fauna assemblage, like that in the unmined areas. Outcomes from these monitoring surveys would inform planning for future rehabilitation programs and where appropriate taking corrective action in existing rehabilitated areas.

Terrestrial Ecosystems has undertaken the baseline survey, which will be the first of the long-term monitoring surveys. These survey data indicated that the three unmined sites selected as analogue climax communities for the rehabilitation areas are not similar, and there are appreciable differences among the fauna assemblages within aged classes of rehabilitation. Based on the available data, there are two alternative conclusions that can be reached about succession of rehabilitated areas along a trajectory to an analogue climax community:

- differences among the unmined areas makes it difficult to determine what is the target climax community, and it is possible there are other alternative Jarrah Forest communities that have not been sampled that would better represent climax communities that will eventuate in rehabilitated areas; or
- rehabilitation programs are not of sufficient quality to enable the mammal, reptile and amphibian assemblages in unmined area to recolonise rehabilitated areas within a 15-year period sufficiently to clearly indicate they are on a trajectory toward establishing analogue climax communities.

The preliminary data collected in this survey would suggest that conservation significant species are in the unmined areas, but not the rehabilitated areas. If further investigation indicates that this was the case, then a focus on the long-term preservation of conservation significant species, and in particular their use of rehabilitation areas should be a priority.

No foxes were recorded during the camera trapping program and only a single feral cat was recorded, however, the area surveyed was very limited when viewed in the context of the extent of Jarrah Forest managed by Alcoa. Feral pigs were abundant in a localised area and are known to cause environmental damage. It is suggested that Alcoa implement a program to manage feral pest species likely to be impact on ecosystems, and in particular conservation significant species.

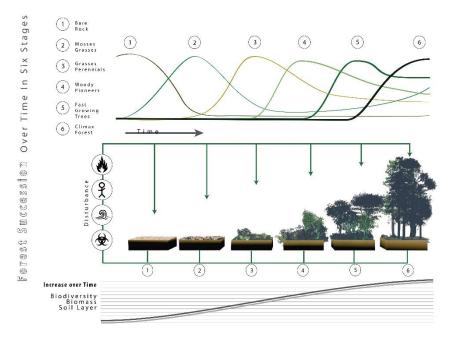
It is suggested that this monitoring program is reviewed before the survey is repeated, with particular attention to:

- the fauna target(s) as represented by the rehabilitation trajectory and intended climax community(ies);
- survey design (i.e. location of analogue sites);
- use of camera traps to determine presence vs relative abundance or conservation significant fauna; and
- value-for-money of surveys, when compared with the alternative uses of these resources to achieve a similar objective(s) (e.g. the long-term preservation of conservation significant species, and in particular their use of rehabilitation areas).



# 1. INTRODUCTION

#### 1.1 BACKGROUND


Alcoa of Australia Ltd (Alcoa) operates the Huntly and Willowdale bauxite mines east of Pinjarra in Western Australian on mineral lease ML1SA. The Huntly mine was established in 1972 and is located near Dwellingup and supplies bauxite ore to the Kwinana and Pinjarra refineries, as well as other clients. The Huntly mine currently includes locations at Myara, McCoy and Karnet. The Willowdale mine was established in 1984 and is located near Wagerup and supplies bauxite ore to the Wagerup refinery, as well as other clients. The Willowdale mine currently includes locations at Larego, Orion and Arundel.

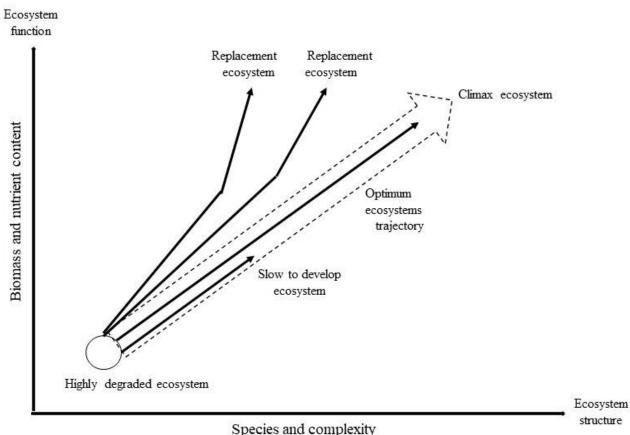
The primary objective of Alcoa's bauxite mine rehabilitation program is to return a self-sustaining jarrah forest ecosystem after mining. This includes re-establishing populations of all faunal groups and species in densities and distributions required for maintaining forest biodiversity and ecosystem function. To ensure this objective is met, Alcoa established a long-term fauna monitoring program in 1991. This program characterises and monitors the key fauna of the areas in which Alcoa operates and assesses the impact of mining on these species.

#### 1.2 SUCCESSION

Grant (2006) indicated that Alcoa's objective for its rehabilitation programs was to establish self-sustaining jarrah forest ecosystems. Grant (2006) went on to indicate that 'restored native ecosystems may be different in structure to the surrounding native ecosystems, but there should be confidence that they will change with time along with, or toward the structure and composition of the surrounding area' and 'should be capable of withstanding disturbances such as fire or grazing'. It has been presumed that this object is still applicable.

Primary succession is defined here as a process of change in the species structure of an ecological community over time from an assemblage that commences on barren or highly disturbed land to the climax community. This can be diagrammatically represented as shown in Plate 1.






taken from https://commons.wikimedia.org/wiki/File:Forest\_succession\_depicted\_over\_time.png



During the very early stages, very few terrestrial vertebrate species will colonise the area due to a lack of suitable habitat and higher levels of predation because of a lack of cover and retreat sites. Once the vegetation, invertebrates and microbial activity move through the succession stages and additional habitat niches open up, then more species can colonise the rehabilitated areas. In some cases, the abundance of early colonisers (i.e. pioneers) will be reduced due to competition and changing habitat conditions. Rehabilitated areas will cycle through many iterations of this process and along the way, species abundance typically increases, and the various species reach population levels suitable for the habitat and resources available, until such time it becomes a climax community.

Vertebrate fauna are only a part of the primary succession process and their progress from pioneering species toward a climax community is interrelated with the vegetation, fungi, microbial and invertebrate community development. Within broad boundaries, the trajectory in rehabilitated areas should be apparent in monitoring data (Plate 2).



#### species and comprisity

#### Plate 2. Primary succession trajectory(taken from: Bradshaw 1984)

Anderson et al. (2022) and Cross et al. (2019, 2021) argued that fauna have very often been forgotten in considering rehabilitation success with the focus on soils and vegetation. Anderson et al. (2022) went on to suggest a framework for incorporating fauna into the restoration process, and in doing so, identified the following five key criteria for effective faunal standards:

- appropriate reference ecosystem [analogue site(s)];
- faunal taxa to be considered;
- attributes of these taxa to be measured;
- acceptable level of similarity with reference conditions; and
- sampling methodology that is sufficiently robust to provide reliable comparative data.



#### 1.3 OBJECTIVE

Alcoa's intention was to establish long-term monitoring sites for vertebrate fauna in unmined areas, and areas rehabilitated 5, 10 and 15-years ago. It was proposed that the vertebrate fauna at these sites would be periodically monitored to enable judgements to be made about the extent to which rehabilitated areas were progressing on a trajectory towards the recreation of functional ecosystems, like that in the unmined areas. Outcomes from these monitoring surveys would inform planning for future rehabilitated areas and where appropriate corrective action in existing rehabilitated areas.

Here we provide a description of the methods used to collect vertebrate fauna data, the results of the baseline monitoring program, discussion of the results and a commentary on the program and a suggested way forward.



# 2. METHODS

#### 2.1 PIT-TRAPPING PROGRAM

Twelve sites in the Jarrah Forest (Figures 1 and 2) were established by Alcoa (Plates 16-39). This included three unmined analogue sites, three sites that were rehabilitated in 2007 (i.e. 15-years old), three sites that were rehabilitated in 2012 (i.e. 10-years old) and three sites that were rehabilitated in 2017 (i.e. 5-years old; Appendix A).

At each site there were four near parallel drift fences 30m long with approximately 25cm of flywire above the ground. Along each drift fence there were three 20L PVC buckets, three PVC 150mm diameter pipes that were 400mm deep and buried directly under the flywire drift fence. Three pair of funnels traps were deployed either side of the drift fence and three aluminium box traps were set approximately 10m to the side of the drift fence (Plate 3). Buckets used as pit-traps had holes and styrene sheets in the bottom to provide captured fauna protection from unfavourable environmental conditions. These traps targeted small mammals, reptiles and amphibians.

The location of trapping sites is shown in Figures 2-14 and the coordinates are provided in Appendix B. Traps were opened on 9 January and closed on 21 January 2023.

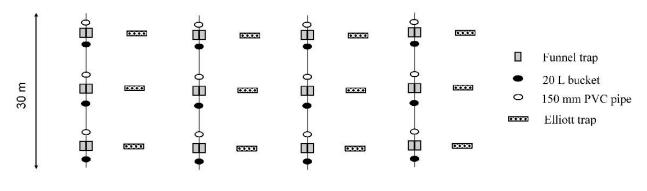



Plate 3. Trapping site layout

#### 2.2 CAGE TRAPPING PROGRAM

Eighty cage traps (Plate 4) targeting Chuditch (*Dasyurus hallucatus*) were deployed adjacent to gravel tracks where Alcoa believed that there may have been Chuditch. Trapping sites were selected by Alcoa on the basis that one was inside the mine perimeter and comprised a variety of levels of disturbance (i.e. rehabilitation of various ages and remnant vegetation), and the other was outside the mine perimeter in unmined forest (Figures 18-21).

Cages were baited with raw chicken necks which were replaced every three days or as required. Traps were opened on 8 January and closed on 20 January 2023 at locations were Chuditch had previously been reported. Camera traps targeted the medium and large mammals, but any fauna recorded were reported.





Plate 4. Baited cage trap

#### 2.3 CAMERA TRAPS

Twenty-four camera traps (Reconyx HC600) were deployed in the denser vegetation targeting Quokka (*Setonix brachyurus*) and Quenda (*Isoodon fusciventer*; Figures 15-17). Each camera trap had a non-reward lure (Plate 5) placed ~3-4m in front of the camera trap (Plate 6) in the detection zone. Lures were a mixture of peanut butter, rolled oats and sardines topped up with mullie oil. Traps were deployed on 8 January and retrieved on 20 January 2023.



Plate 5. Non-reward lure

Plate 6. Mounted camera trap

### 2.4 INVERTEBRATE SAMPLING

Each trapping site was searched for invertebrates for one hour by two people for the following taxonomic groups: isopods, diplopods, opiliones, scorpions, mygalomorph spiders and pseudoscorpions. Specimens were preserved in ethanol but not identified. In addition, specimens from these taxonomic groups caught in pit and funnel traps were also collected and preserved. All specimens were given to Alcoa for identification and analysis.



#### 2.5 DATA ANALYSIS

The diversity for the trapped fauna assemblage can be measured in numerous ways (Hayek and Buzas 1997, Magurran 2004). The four most common attributes are species richness, evenness, a single diversity score and relative abundance. These metrics are interrelated and there are a diverse number of analytical tools available to quantify these metrics and similarity among the trapped assemblages for each site.

#### 2.5.1 Principal component analysis

A principal component analysis (PCA) is used to reduce the complexity of large datasets by transforming a large dataset of variables into a smaller one that contains most of the information. PCAs were calculated (StatistiXL) for all survey site-based trapping data (i.e. excluding cage and camera trap data), to determine the extent to which vertebrate fauna assemblages were similar/different among sites. Eigenvalues >1 are typically used to determine the components that are useful, and for each component a percentage of its contribution to displaying the attributes of larger data set provides useful information about the importance of each component.

It should be expected that if succession processes were advancing along an expected trajectory, then, survey sites should be grouped in the PCAs based according to the period of rehabilitation (i.e. unmined, 15-years, 10-years and 5-years) using the most significant principal components (i.e. PCAs 1 and 2).

#### 2.5.2 Similarity

If having established that there were differences among the trapped fauna assemblages at each site, and if rehabilitation and succession were advancing along an expected trajectory, then the extent to which the trapped fauna assemblages were similar is of interest. Ideally, the three unmined analogue sites should be more similar to each other than to the rehabilitation sites, and rehabilitation site similarity should be greatest among rehabilitation aged class sites.

The Morisita-Horn similarity index was used to compare similarity among combinations of trapped fauna assemblages at each site. The quantitative Morisita-Horn similarity index was selected because it is not strongly influenced by either species richness or sample size (Wolda 1981) and it was recommended by Magurran (2004). Readers should, however, be aware that it is heavily influenced by the abundance of the most abundant species. The Morisita-Horn similarity index was calculated using Species, Diversity and Richness software (Pisces Conservation Ltd 2010).

#### 2.5.3 Species richness and relative abundance

The actual number of species caught at each trapping site is one measure of species richness and is directly related to the trapping effort and number of individuals caught. Had the trapping effort been extended and more individuals caught, then it is likely the number of species caught at each site would increase (Colwell and Coddington 1994, Magurran 2004). Species richness and abundance was calculated using Species, Diversity and Richness software IV (Pisces Conservation Ltd 2010).

It should be expected that the unmined sites would have the highest number of species and species abundance, and as rehabilitation sites progress along an expected succession trajectory, then species richness would increase, however, abundance for many species will rise and fall based on the available habitat and competition among species.



#### 2.5.4 Evenness

Smith and Wilson (1996), supported by Magurran (2004), reported their measure of evenness (Evar) to be the most satisfactory overall. Species, Diversity and Richness software IV software (Pisces Conservation Ltd 2010) was used to calculate the Smith and Wilson method of determining evenness. It is unknown how evenness is related to fauna assemblages in rehabilitated sites.

#### 2.5.5 Diversity

Fisher's alpha (also known as Log series diversity) was used to measure diversity because of its good discriminating ability and low sensitivity to sample size (Kempton and Taylor 1974, Magurran 1988, Hayek and Buzas 1997). Other more commonly used diversity indices were also calculated.

Log series diversity, Shannon-Wiener and Simpson's indices were calculated using Species, Diversity and Richness IV software (Pisces Conservation Ltd 2010).



# 3. **RESULTS**

All vertebrate fauna caught in pit, funnel and aluminium box traps are shown in Table 1.

Table 1. Trapping data results

|           |                  | Survey site status           | Unmined | Unmined | Unmined | 15-year rehabilitation | 15-year rehabilitation | 15-year rehabilitation | 10-year rehabilitation | 10-year rehabilitation | 10-year rehabilitation | 5-year rehabilitation | 5-year rehabilitation | 5-year rehabilitation | Total |
|-----------|------------------|------------------------------|---------|---------|---------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|-----------------------|-----------------------|-----------------------|-------|
| Таха      | Family           | Species<br>Survey sites      | 1       | 2       | 3       | 7                      | 8                      | 12                     | 4                      | 5                      | 6                      | 9                     | 10                    | 11                    |       |
| Amphibian | Limnodynastidae  | Heleioporus eyrei            |         |         | 2       |                        |                        |                        |                        |                        |                        |                       |                       |                       | 2     |
|           |                  | Heleioporus inornatus        | 1       |         |         |                        |                        |                        |                        |                        |                        |                       |                       |                       | 1     |
|           | Myobatrachidae   | Crinia georgiana             |         | 2       |         |                        |                        |                        | 1                      |                        |                        | 1                     |                       |                       | 4     |
| Mammal    | Burramyidae      | Cercartetus concinnus        | 3       | 2       | 1       | 23                     | 13                     | 8                      | 3                      |                        | 12                     |                       |                       | 1                     | 66    |
|           | Dasyuridae       | Antechinus flavipes          |         | 1       | 14      | 5                      | 1                      | 4                      | 11                     | 7                      | 2                      | 2                     | 2                     |                       | 49    |
|           |                  | Sminthopsis gilberti         |         |         | 1       | 2                      | 1                      | 2                      | 5                      |                        | 1                      | 2                     | 1                     | 2                     | 17    |
|           | Muridae          | Mus musculus                 |         |         |         |                        |                        |                        |                        | 1                      | 1                      | 6                     |                       | 5                     | 13    |
| Reptile   | Agamidae         | Pogona minor                 |         |         |         | 3                      | 1                      |                        |                        | 2                      | 2                      |                       |                       | 1                     | 9     |
|           | Carphodactylidae | Underwoodisaurus milii       | 2       | 2       |         |                        |                        |                        |                        | 2                      |                        | 1                     | 3                     | 3                     | 13    |
|           | Diplodactylidae  | Diplodactylus lateroides     |         | 1       |         | 1                      | 1                      |                        |                        |                        | 1                      | 2                     | 6                     | 1                     | 13    |
|           |                  | Diplodactylus polyophthalmus |         |         |         | 1                      |                        |                        | 1                      |                        |                        |                       |                       | 1                     | 3     |
|           | Elapidae         | Suta gouldii                 |         |         |         | 1                      |                        |                        |                        |                        | 1                      |                       |                       |                       | 2     |
|           |                  | Suta nigriceps               | 1       |         |         |                        |                        |                        |                        | 3                      |                        |                       |                       |                       | 4     |
|           | Gekkonidae       | Christinus marmoratus        |         |         |         |                        |                        |                        |                        |                        |                        |                       |                       | 1                     | 1     |
|           | Pygopodidae      | Lialis burtonis              |         |         |         |                        |                        |                        |                        |                        | 1                      |                       |                       |                       | 1     |
|           | Scincidae        | Acritoscincus trilineatus    |         | 7       | 2       | 9                      | 6                      | 9                      | 1                      | 12                     | 9                      |                       | 1                     | 3                     | 59    |
|           |                  | Cryptoblepharus buchananii   | 3       | 7       | 2       |                        |                        |                        |                        |                        |                        | 1                     |                       |                       | 13    |
|           |                  | Egernia napoleonis           | 13      | 5       | 1       |                        |                        |                        |                        | 1                      |                        |                       |                       |                       | 20    |
|           |                  | Hemiergis initialis          | 2       | 4       |         |                        | 2                      | 2                      |                        | 5                      |                        |                       |                       |                       | 15    |
|           |                  | Lerista distinguenda         | 11      | 15      | 11      | 3                      | 4                      |                        |                        | 3                      | 6                      | 1                     |                       |                       | 54    |
| ŀ         |                  | Lerista elegans              |         | 1       |         | 1                      |                        |                        |                        | 3                      |                        |                       |                       |                       | 5     |
|           |                  | Menetia greyii               | 3       |         | 1       | 4                      | 4                      |                        | 2                      | 1                      | 3                      | 1                     | 6                     | 7                     | 32    |
|           |                  | Morethia obscura             | 14      | 13      | 2       | 7                      | 7                      | 4                      | 4                      | 6                      | 9                      | 9                     | 1                     | 4                     | 80    |
|           |                  | Tiliqua rugosa               |         |         |         |                        | 1                      |                        |                        |                        |                        |                       |                       |                       | 1     |
|           | Typhlopidae      | Anilios australis            |         | 5       |         |                        | 1                      |                        |                        | 1                      | 1                      |                       |                       |                       | 8     |
|           |                  | Total                        | 53      | 65      | 37      | 60                     | 42                     | 29                     | 28                     | 47                     | 49                     | 26                    | 20                    | 29                    | 485   |

Of interest, a single *Morelia imbricata* was recorded on one of the tracks while undertaking the survey (Plate 7).





Plate 7. Carpet python

Vertebrate fauna caught in cage traps are shown in Table 2.

| Table 2. | Fauna | caught in | а | cage traps |  |
|----------|-------|-----------|---|------------|--|
|----------|-------|-----------|---|------------|--|

| Таха    | Family         | Species                |     |     |    |     |     |     |     |     |     | Trap | numl | bers |     |     |     |    |     |     |     |       |
|---------|----------------|------------------------|-----|-----|----|-----|-----|-----|-----|-----|-----|------|------|------|-----|-----|-----|----|-----|-----|-----|-------|
|         |                |                        | 12C | 13C | 1C | 28C | 41C | 42C | 44C | 45C | 47C | 50C  | 57C  | 59C  | 61C | 63C | 68C | 6C | 74C | 76C | 78C | Total |
| Mammal  | Dasyuridae     | Dasyurus geoffroii     |     |     |    |     | 1   | 1   | 1   | 1   |     |      |      |      | 1   | 1   |     |    | 1   | 3   | 2   | 12    |
|         | Peramelidae    | Isoodon fusciventer    |     |     |    |     |     |     |     |     |     |      | 1    |      |     |     | 1   |    |     |     |     | 2     |
|         | Tachyglossidae | Tachyglossus aculeatus |     |     | 1  |     |     |     |     |     |     |      |      |      |     |     |     |    |     |     |     | 1     |
| Reptile | Scincidae      | Tiliqua rugosa         |     |     |    |     |     |     |     |     |     | 1    | 1    |      |     |     |     |    |     |     |     | 2     |
|         | Varanidae      | Varanus gouldii        |     | 1   |    | 1   |     | 1   | 1   | 1   | 1   |      |      | 1    |     | 1   |     |    |     |     |     | 8     |
|         |                | Varanus rosenbergi     | 1   | 1   |    | 1   |     |     |     |     |     | 1    |      |      |     |     |     | 3  |     |     |     | 7     |
|         |                | Total                  | 1   | 2   | 1  | 2   | 1   | 2   | 2   | 2   | 1   | 2    | 2    | 1    | 1   | 2   | 1   | 3  | 1   | 3   | 2   | 32    |

Vertebrate fauna caught by trap type are shown in Table 3.



# Table 3. Vertebrate fauna recorded by trap type

| Таха      | Family           | Species                      | Aluminium box trap | Bucket | Funnel | Pipe | Cage trap - Large | Total |
|-----------|------------------|------------------------------|--------------------|--------|--------|------|-------------------|-------|
| Amphibian | Limnodynastidae  | Heleioporus eyrei            |                    | 2      |        |      |                   | 2     |
|           |                  | Heleioporus inornatus        |                    | 1      |        |      |                   | 1     |
|           | Mvobatrachidae   | Crinia aeoraiana             |                    | 3      |        | 1    |                   | 4     |
| Mammal    | Burramyidae      | Cercartetus concinnus        |                    | 28     |        | 38   |                   | 66    |
|           | Dasyuridae       | Antechinus flavipes          | 21                 | 4      | 5      | 19   |                   | 49    |
|           |                  | Dasvurus aeoffroii           |                    |        |        |      | 12                | 12    |
|           |                  | Sminthopsis gilberti         |                    | 8      |        | 9    |                   | 17    |
|           | Muridae          | Mus musculus                 | 7                  |        | 1      | 5    |                   | 13    |
|           | Peramelidae      | Isoodon fusciventer          |                    |        |        |      | 2                 | 2     |
|           | Tachyglossidae   | Tachyglossus aculeatus       |                    |        |        |      | 1                 | 1     |
| Reptile   | Agamidae         | Poqona minor                 |                    | 5      | 1      | 3    |                   | 9     |
|           | Carphodactylidae | Underwoodisaurus milii       |                    | 2      | 5      | 6    |                   | 13    |
|           | Diplodactylidae  | Diplodactylus lateroides     |                    | 6      | 4      | 3    |                   | 13    |
|           |                  | Diplodactvlus polvophthalmus |                    | 1      | 1      | 1    |                   | 3     |
|           | Elapidae         | Suta qouldii                 |                    |        | 2      |      |                   | 2     |
|           |                  | Suta nigriceps               |                    | 1      | 3      |      |                   | 4     |
|           | Gekkonidae       | Christinus marmoratus        |                    |        |        | 1    |                   | 1     |
|           | Pygopodidae      | Lialis burtonis              |                    |        | 1      |      |                   | 1     |
|           | Scincidae        | Acritoscincus trilineatus    |                    | 20     | 28     | 11   |                   | 59    |
|           |                  | Cryptoblepharus buchananii   |                    | 1      | 1      | 11   |                   | 13    |
|           |                  | Eaernia napoleonis           | 1                  | 3      | 13     | 3    |                   | 20    |
|           |                  | Hemierais initialis          |                    | 9      | 2      | 4    |                   | 15    |
|           |                  | Lerista distinguenda         |                    | 22     | 3      | 29   |                   | 54    |
|           |                  | Lerista elegans              |                    | 5      |        |      |                   | 5     |
|           |                  | Menetia grevii               |                    | 15     |        | 17   |                   | 32    |
|           |                  | Morethia obscura             |                    | 21     | 38     | 21   |                   | 80    |
|           |                  | Tiliqua ruqosa               |                    |        | 1      |      | 2                 | 3     |
|           | Typhlopidae      | Anilios australis            |                    | 2      | 2      | 4    |                   | 8     |
|           | Varanidae        | Varanus gouldii              |                    |        |        |      | 8                 | 8     |
|           |                  | Varanus rosenbergi           |                    |        |        |      | 7                 | 7     |
|           |                  | Total                        | 29                 | 159    | 111    | 186  | 32                | 517   |



Vertebrate fauna recorded by camera traps are shown in Table 4.

#### Table 4. Camera trap results

|          |                |                          |     |     |     | Camera trap outbooks           6         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         < |     |     |     |     |     |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|----------|----------------|--------------------------|-----|-----|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Таха     | Family         | Species                  | CM1 | CM2 | CM3 | CM4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CM5 | CM6 | CM7 | CM8 | CM9 | CM10 | CM11 | CM12 | CM13 | CM14 | CM15 | CM16 | CM17 | CM18 | CM19 | CM20 | CM21 | CM22 | CM23 | CM24 |
| Bird     | Artamidae      | Strepera versicolor      | 1   |     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |     |     |     |     |      |      |      |      | 1    | 1    |      |      |      |      |      |      |      |      |      |
|          | Casuariidae    | Dromaius novaehollandiae |     | 1   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |     |     |     |     |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|          | Columbidae     | Phaps elegans            | 2   |     |     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |     |     |     |     |      |      |      | 1    |      |      |      |      |      |      |      |      |      |      |      |
| Mammal   | Dasyuridae     | Antechinus flavipes      |     |     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |     |     |     |     |      | 1    |      | 1    |      |      |      |      |      |      |      |      |      |      |      |
|          |                | Dasyurus geoffroii       |     |     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |     |     |     |     |      |      |      |      |      | 1    | 1    |      |      |      |      |      |      |      |      |
|          | Felidae        | Felis catus              |     |     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |     |     |     |     |      |      |      | 1    |      |      |      |      |      |      |      |      |      |      |      |
|          | Macropodidae   | Macropus fuliginosus     | 1   |     | 1   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | 1   |     | 1   |     |      | 1    |      | 3    | 1    | 3    | 2    |      | 2    | 2    | 1    |      | 1    | 1    | 1    |
|          |                | Notamacropus irma        |     |     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |     |     |     |     |      | 1    | 1    | 2    |      |      |      |      |      |      |      |      |      |      |      |
|          |                | Setonix brachyurus       |     |     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |     |     |     | 1   | 1    | 1    | 2    | 1    |      |      |      |      |      |      |      |      |      |      |      |
|          | Muridae        | Mus musculus             | 1   |     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |     |     |     |     |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|          |                | Rattus rattus            | 1   |     | 1   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |     |     | 1   |     |      |      |      |      | 1    |      |      |      |      |      | 1    |      |      |      |      |
|          | Peramelidae    | Isoodon fusciventer      |     |     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |     |     |     |     | 1    |      |      |      |      |      |      | 1    | 1    |      |      |      | 1    |      | 1    |
|          | Suidae         | Sus scrofa               | 1   | 1   | 2   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4   | 3   | 1   | 2   |     |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|          | Tachyglossidae | Tachyglossus aculeatus   | 1   |     |     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |     |     |     |     |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| Reptiles | Varanidae      | Varanus rosenbergi       | 1   |     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |     |     |     |     |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |

#### 3.1 SIMILARITY AMONG SURVEY SITES

Survey site similarity (or difference) was determined using two metrics; PCA and Morisita-Horn similarity index.

For the PCA analysis, the PCAs 1 and PCAs 2, and PCAs 1 and PCAs 3 are plotted, and the eigenvalues and percent variance accounted by these PCAs are shown in Table 5.

| Value         | PC 1  | PC 2  | PC 3  | PC 4  | PC 5  | PC 6  | PC 7  | PC 8  | PC 9  | PC 10 | PC 11  |
|---------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|
| Eigenvalue    | 5.94  | 4.18  | 3.22  | 2.80  | 2.24  | 1.83  | 1.51  | 1.23  | 1.09  | 0.56  | 0.42   |
| % of Variance | 23.76 | 16.73 | 12.86 | 11.21 | 8.96  | 7.33  | 6.03  | 4.91  | 4.35  | 2.22  | 1.66   |
| Cum. %        | 23.76 | 40.48 | 53.34 | 64.56 | 73.51 | 80.84 | 86.86 | 91.77 | 96.12 | 98.34 | 100.00 |



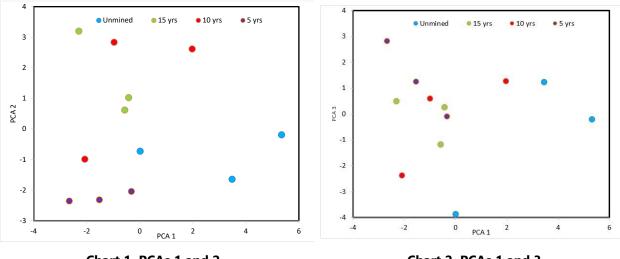



Chart 1. PCAs 1 and 2

Chart 2. PCAs 1 and 3

The Morisita-Horn index provides an indication of the similarity of the fauna assemblage among sites (Table 6).

|       | Sites    | 2       | 3       | 7     | 8     | 12    | 4     | 5     | 6     | 9     | 10    | 11    |
|-------|----------|---------|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Sites |          | Unmined | Unmined | 15    | 15    | 15    | 10    | 10    | 10    | 5     | 5     | 5     |
| 1     | Unmined  | 0.814   | 0.410   | 0.344 | 0.500 | 0.269 | 0.232 | 0.378 | 0.540 | 0.547 | 0.177 | 0.344 |
| 2     | Unmined  |         | 0.523   | 0.383 | 0.565 | 0.427 | 0.236 | 0.613 | 0.659 | 0.521 | 0.147 | 0.317 |
| 3     | Unmined  |         |         | 0.330 | 0.317 | 0.368 | 0.710 | 0.513 | 0.404 | 0.290 | 0.226 | 0.116 |
| 7     | 15-years |         |         |       | 0.947 | 0.864 | 0.500 | 0.439 | 0.904 | 0.276 | 0.229 | 0.388 |
| 8     | 15-years |         |         |       |       | 0.830 | 0.418 | 0.506 | 0.960 | 0.392 | 0.282 | 0.487 |
| 12    | 15-years |         |         |       |       |       | 0.568 | 0.707 | 0.844 | 0.304 | 0.180 | 0.364 |
| 4     | 10-years |         |         |       |       |       |       | 0.486 | 0.438 | 0.459 | 0.352 | 0.316 |
| 5     | 10-years |         |         |       |       |       |       |       | 0.619 | 0.396 | 0.265 | 0.432 |
| 6     | 10-years |         |         |       |       |       |       |       |       | 0.466 | 0.258 | 0.512 |
| 9     | 5-years  |         |         |       |       |       |       |       |       |       | 0.331 | 0.645 |
| 10    | 5-years  |         |         |       |       |       |       |       |       |       |       | 0.634 |

#### Table 6. Morisita-Horn index for 12 sites

\*Cells in bold have a similarity greater than 0.75

#### 3.2 SPECIES ABUNDANCE AND DIVERSITY

Species richness, Shannon Wiener index, Simpsons D index, Fishers' Alpha index and Smith and Wilsons B index are provided for each survey site and for all sites combined in Table 7.



# Table 7. Diversity and abundance index scores

|          | Site # | Species richness | Shannon Wiener | Simpsons' D | Fishers' Alpha | Smith and<br>Wilson B |
|----------|--------|------------------|----------------|-------------|----------------|-----------------------|
| Unmined  | 1      | 10               | 1.91           | 5.86        | 3.64           | 0.54                  |
| Unmined  | 2      | 13               | 2.22           | 8.19        | 4.89           | 0.56                  |
| Unmined  | 3      | 10               | 1.75           | 4.44        | 4.50           | 0.55                  |
| 15-years | 7      | 12               | 1.98           | 5.32        | 4.51           | 0.52                  |
| 15-years | 8      | 12               | 2.07           | 6.78        | 5.61           | 0.56                  |
| 15-years | 12     | 6                | 1.63           | 5.21        | 2.30           | 0.79                  |
| 10-years | 4      | 8                | 1.74           | 5.04        | 3.74           | 0.62                  |
| 10-year  | 5      | 13               | 2.26           | 8.79        | 5.95           | 0.64                  |
| 10-year  | 6      | 13               | 2.13           | 7.44        | 5.78           | 0.54                  |
| 5-years  | 9      | 10               | 1.92           | 6.02        | 5.95           | 0.67                  |
| 5-years  | 10     | 7                | 1.69           | 5.59        | 3.83           | 0.67                  |
| 5-years  | 11     | 11               | 2.15           | 9.23        | 6.46           | 0.70                  |
| All      |        | 25               | 2.62           | 10.72       | 5.59           | 0.30                  |



# 4. DISCUSSION

#### 4.1 PIT, FUNNEL AND ALUMINIUM BOX TRAPS

It was anticipated that there would be similarity among the unmined sites in the vertebrate fauna assemblage and this would be reflected in a clustering of these sites in the graph of PCA 1 and PVA 2 (Chart 1) or PCA 1 and PCA 3 (Chart 2), which is not the case. The similarity index score for unmined sites 1 and 2 is relatively high (i.e. 0.81) but for sites 1 and 3 (i.e. 0.41), and 2 and 3 (0.52) there are differences. The most obvious differences were abundance of *Antechinus flavipes* (Plate 8), lower number of *Morethia obscura*, and less species and less individuals at unmined site 3 when compared with unmined sites 1 and 2.

*Cryptoblepharus buchananii, Egernia napoleonis* and *Lerista distinguenda* are species likely to be present and characterise climax assemblages, and should become evident as the rehabilitation programs progress. In this situation, their abundance appears uneven in the analogue sites and only *Lerista distinguenda* displays the anticipated pattern. If all unmined sites had a similar vertebrate fauna assemblage, then these data could collectively be used as the succession trajectory climax community, but given the differences, it begs the question if other unmined sites in the northern Jarrah forest were surveyed, then how different would they be to the existing three unmined survey sites. The vertebrate data in Appendix C (excluding volant species) indicates that there are numerous other species (particularly skinks) that have been recorded in the broader Jarrah Forest that were not caught in the three unmined survey sites.

Rehabilitation sites that are 5-years old provide a good grouping on PCA 2 when compared with the other groups, but had a similar dispersed grouping on PCA 1, and the similarly index suggests sites 9 and 11, and 10 and 11 are more closely aligned than sites 9 and 10. Pioneering colonising species are the *Mus musculus*, *Menetia greyii* and *Morethia obscura* and species richness of 7-11 is less than for older rehabilitated sites.

Rehabilitation sites that are 10-years old show an increase in species richness for two sites (i.e.13, 13 and 8), with sites well spread on PCA 1, but two sites are reasonably similar of PCAs 2 and 3 (Charts 1 and 2). The Morisita-Horn similarity index scores were low, reflecting the information provided by the PCAs. Small mammals are starting to colonise the 10-year rehabilitation sites, with an abundance of *Cercartetus concinnus* (Plate 9) at one site, which almost certainly reflects the abundance of suitable flowering plants. *Pogona minor* is a recognised early colonising reptile (Thompson and Thompson 2003, Thompson and Thompson 2007a) and *Acritoscincus trilineatus, Morethia obscura* and *Lerista distinguenda* were relatively abundant at two of the sites and widespread throughout the Jarrah Forest. As widely foraging species they have a greater propensity to colonise new areas than species with defined home ranges and high site fidelity.



Plate 8. Mardo

Plate 9. Western pygmy possum



Two of the rehabilitation sites that are 15-years old had a species richness of 12 and the other site had 6 recorded species, and this is reflected in the diversity scores. Two of these 15-year old sites grouped on PCA 1 and PCA 2 (Chart 1). A different two 15-years old rehabilitation sites also grouped closely on PCA 3 and also with two unmined sites (Chart 2).

These data might suggest it was more than one or two species contributing to the difference between unmined and 15-year old rehabilitation sites in the vertebrate fauna assemblage. *Cercartetus concinnus* were abundant at two sites and *Acritoscincus trilineatus* and *Morethia obscura* were abundant at all three sites. In the Goldfields we have observed substantial seasonal variability in the catch rate of *Cercartetus concinnus*, but the reason is not clear (Thompson 2004).

#### 4.2 TRAP TYPES

Aluminium box traps mostly caught *Antechinus flavipes* and *Mus musculus*, and buckets, pipes and funnel traps caught most reptiles. Because buckets, pipes and funnel traps also caught *Antechinus flavipes* and *Mus musculus*, the aluminium box traps inflated the number of these two species caught in the trapping programs in the 12 survey sites compared with other species that did not enter these traps. As shown by Thompson and Thompson (2007b) bucket and pipe pit-traps are far superior at catching small mammals compared with funnel traps, and overall, pipe pit-traps recorded more individuals than bucket pit-traps followed by funnel traps (Table 3). Because various trap types catch a different suite of vertebrate fauna, each trap type introduces a bias into the dataset when analysed using diversity, similarity and PCA methods.

#### 4.3 CAGE TRAPS

Cage traps were deployed to target terrestrial vertebrate fauna unlikely to be caught in pit, funnel and aluminium box traps, and were placed at locations where Chuditch had previously been recorded. The use of chicken necks as bait, restricted the range of animals likely to be caught to mostly carnivores, but it was noted that two Quenda were caught, but they are often caught using sardines. Twelve Chuditch were caught in baited cage traps (i.e. #41, 42, 44, 45, 61, 63, 74, 76 and 78). Cage traps 44, 61, 63, 74, 76 and 78 were all in unmined areas, and traps 41 and 42 were in areas rehabilitated in 2004 (i.e. 18 years old). Although cage traps were not deployed across all rehabilitation areas, these data might suggest that Chuditch are mostly confined to unmined and old rehabilitation areas. Placing cage traps in a wider range of aged rehabilitation areas would provide a better indication of their use of rehabilitated areas. The use of selective trapping sites indicated that Chuditch were present in the mined Jarrah Forest, but no indication of their relative abundance nor preferred habitats, which would be useful data if conservation programs for this species were to be planned and implemented.

#### 4.4 CAMERA TRAPS

Camera traps target the larger vertebrate species and those unlikely to be caught in other types of traps. The Western Grey Kangaroo is clearly abundant in the areas that camera traps were deployed, and because of their large home ranges, they are likely to be widespread in the Jarrah Forest. Only two Chuditch (Plate 10) were recorded compared to 12 in cage traps, but this difference is probably largely due to where camera and cage traps were deployed. Quenda (Plate 13) were recorded in two of the three camera trapping locations. The Western Brush Wallaby (Plate 12) was recorded in one of the camera trapping areas (i.e. camera #11, 12 and 13). Quokkas (Plate 11) were recorded in one of the three camera trapping areas (i.e. #9, 10, 11, 12, 13).

Of concern was the abundance of pigs recorded by camera traps (#1, 2, 3, 5, 6, 7, 8) and these were all in the same location. One pig had an ear tag (Plate 15) suggesting that pig-hunters were using this pig in some type of competition to capture a 'marked' pig.





Plate 10. Chuditch

Plate 11. Quokkas



Plate 12. Western Brush Wallaby

Plate 13. Quenda

#### 4.5 CONSERVATION SIGNIFICANT SPECIES

Two conservation significant species (*Setonix brachyurus* and *Dasyurus geoffroii*) and two priority species (*Notamacropus irma* and *Isoodon fusciventer*) were recorded in the survey. The Quokka and Western Brush Wallaby were in the same area, and one of the Quenda records was in this area, but most were in another area. Given that both *Setonix brachyurus* and *Dasyurus geoffroii* are listed as vulnerable under Commonwealth and State conservation legislation, where resources are available these species should be given a higher priority for protection and long-term conservation than the more abundant species that are widespread in the Jarrah Forest.

#### 4.6 PEST AND PREDATOR SPECIES

A single feral cat (Plate 14) was recorded, and of concern it was in the area where Quokkas were recorded. No foxes were recorded, but a small number of Black Rats were recorded on camera traps but not in cage traps, possibly because of the bait used in these traps, and House Mice were caught in aluminium box, pipe and funnel traps. Pigs (Plate 15) are progressively becoming widespread in the Jarrah Forest and are considered a pest species because of the environmental damage they do particularly around creeks and in the denser vegetation. Pigs can also do significant damage to water courses and introduce disease into drinking water catchments. There is an obvious need to reduce or eliminate pigs from the Alcoa managed Jarrah Forest.





Plate 14. Feral cat

Plate 15. Pig with ear tag



# 5. SUMMARY AND CONCLUSIONS

The survey data indicated that the three unmined sites selected as analogue climax communities for the rehabilitation areas are not similar, and there are appreciable differences among the fauna assemblages within aged classes of rehabilitation.

#### 5.1 SUCCESSION AND ON TARGET TO A CLIMAX FAUNA COMMUNITY

Based on the available data, there are two alternative conclusions that can be reached about succession of rehabilitated areas along a trajectory to a climax community:

- differences among the unmined areas makes it difficult to determine what is the target climax community, and it is possible there are other alternative Jarrah Forest communities that have not been sampled that would better represent climax communities that will eventuate in rehabilitated areas; or
- rehabilitation programs are not of sufficient quality to enable the mammal, reptile and amphibian assemblages in unmined area to recolonise rehabilitated areas within a 15-year period sufficient to clearly indicate they are on a trajectory toward establishing analogue climax communities.

If there is no one target climax community valid for all rehabilitation areas because the vertebrate fauna assemblage in the Alcoa mined Jarrah forest is variable, then the current survey methodology is unlikely to provide evidence that the fauna assemblages in the rehabilitated areas are within the expected trajectory to reach the analogue climax community. This issue can be partially addressed by redesigning the survey protocol and placing 'unmined' analogue survey sites in the unmined areas immediately adjacent to the rehabilitation areas. Given that the vertebrate fauna are most likely to colonise rehabilitation sites from the adjacent areas, this approach would provide the maximum opportunity for the vertebrate fauna assemblages in rehabilitated areas to be within expected trajectories toward climax communities. Variation from the expected trajectory would then most probably be a consequence of an inappropriate habitat (e.g. soils, vegetation and microbial activity, etc) in the rehabilitated areas instead of high variability in the analogue undisturbed site. Investigating and adjusting habitats in existing and future rehabilitation areas would be an obvious future task.

#### 5.2 CONSERVATION SIGNIFICANT SPECIES

The presence of conservation significant species within the Jarrah forests that are being mined by Alcoa warrants attention. When mining in the area is completed there will remain many unmined areas, and with time many of the mined areas, irrespective of how they were rehabilitated will be progressing toward self-sustaining functional ecosystems, albeit possibly different to that which existed before mining. The scant data collected in this survey would suggest that conservation significant species are in higher densities in the unmined areas, compared to the rehabilitated areas. If further investigation confirms that this was the case, then a focus on the long-term preservation of conservation significant species, and in particular their use of rehabilitation areas should be a priority. This may mean developing a better understanding of the location and abundance of *Setonix brachyurus, Dasyurus geoffroii, Notamacropus irma* and *Isoodon fusciventer* in the general mining area and putting in place appropriate targeted management and monitoring regimes for these species.

#### 5.3 PEST SPECIES

It was pleasing not to record foxes during the camera trapping program and only a single feral cat, however, the area surveyed was very limited when viewed in the context of the extent of Jarrah Forest managed by Alcoa. Foxes and feral cats are significant predators on our native vertebrate fauna (Catling 1988, Woinarski et al. 2018, Murphy et al. 2019, Woolley et al. 2019, Woinarski et al. 2020, Woolley et al. 2020, Fleming et al. 2021, Woinarski et al. 2021) and are implicated in the decline or extinction of many of the critical weight range mammals, and in many circumstances are having a long-term greater impact on the vertebrate fauna



assemblage than the mining operations. Therefore, resources allocated to feral cat and fox management may provide better long-term outcomes than spending huge resources on fine-turning rehabilitation programs to achieve analogue climax communities. A better understanding and appreciation of foxes and feral cats in the Alcoa mining areas is an obvious starting point for implementing management programs.

The localised abundance of feral pigs is of concern. Feral pigs are known to cause serious damage to ecosystems, biodiversity, fauna habitats, water sources and agricultural assets (National Feral Pig Action Plan Steering Group 2021), and in addition, they pose a biosecurity and disease risk to Australia. Alcoa is urged to develop and implement a feral pig management program within the Jarrah Forest under its stewardship.

#### 5.4 REPEATING THIS SURVEY

To understand whether rehabilitated areas are moving along an established trajectory toward an analogue climax vertebrate fauna community, requires an understanding of what constitutes the climax vertebrate fauna community and the trajectory. Monitoring is then undertaken so that existing rehabilitated areas might be amended where that is feasible and planning for new areas is adjusted based on experience and monitoring results.

If Alcoa are not achieving the desired fauna outcomes, then it may have to revisit its rehabilitation programs which are probably tuned to its completion criteria that are largely based on the abundance of eucalypt stems in rehabilitated areas (Australian Government 2016) and may not be particularly focussed on recreating suitable fauna habitat.

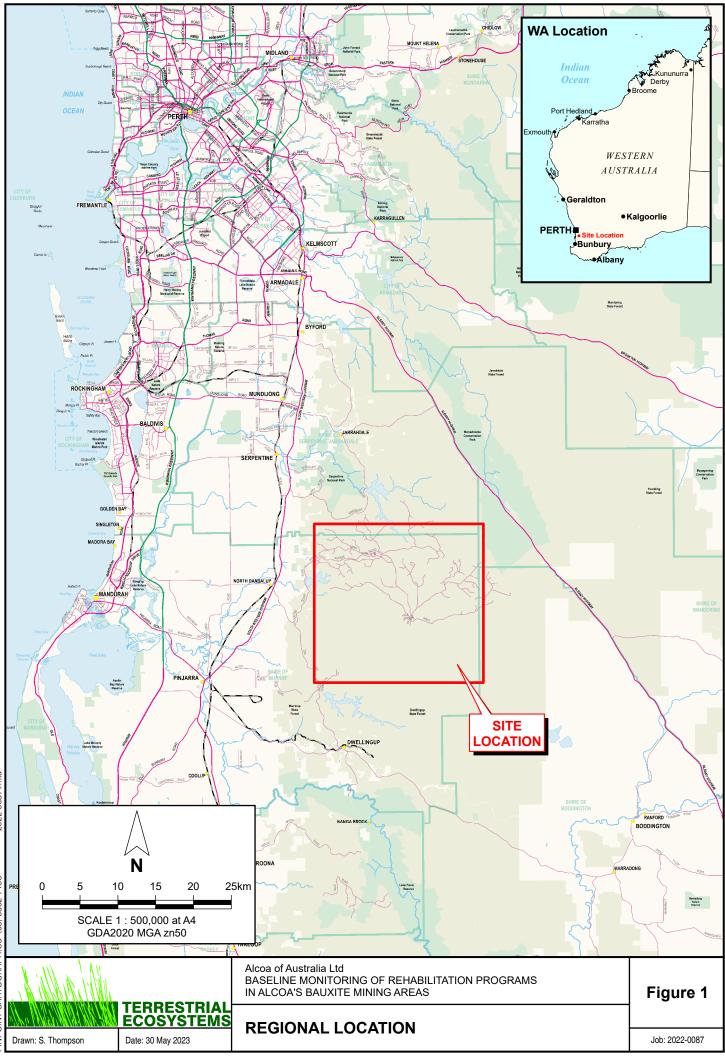
It is suggested that this monitoring program is reviewed before the survey is repeated, with particular attention to:

- the fauna target(s) as represented by the rehabilitation trajectory and intended climax community(ies);
- survey design (e.g. location of analogue sites);
- use of camera traps to determine presence vs relative abundance or conservation significant fauna; and
- value-for-money of surveys, when compared with the alternative uses of these resources to achieve a similar objective(s) (e.g. the long-term preservation of conservation significant species, and in particular their use of rehabilitation areas).

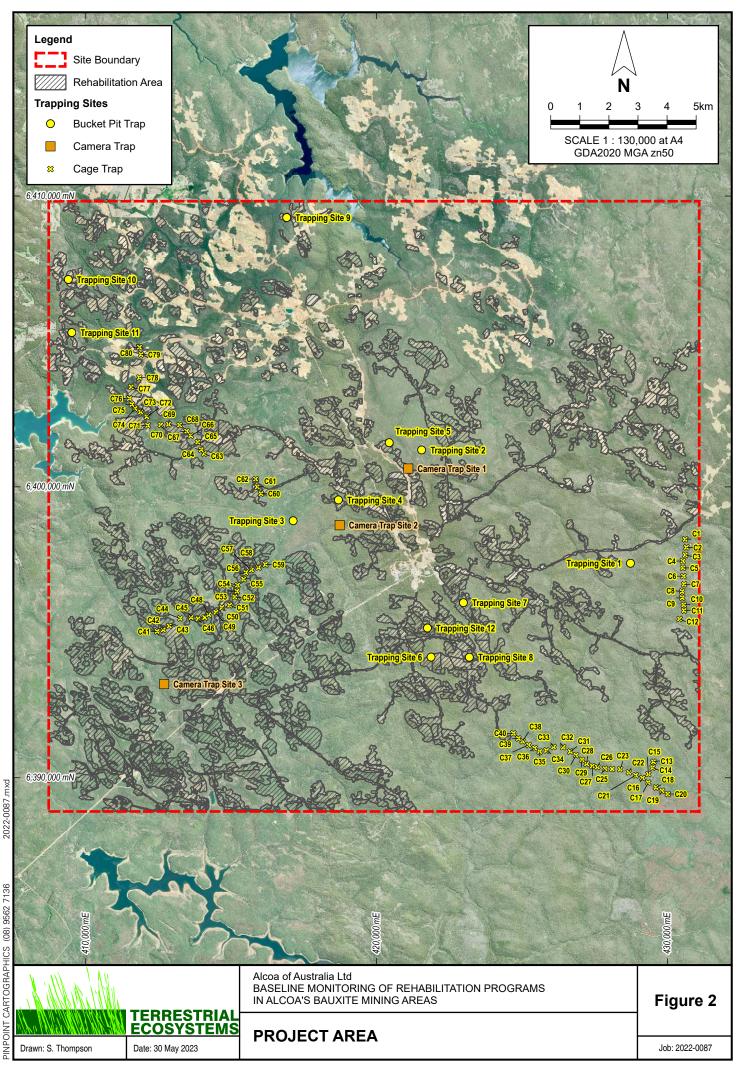


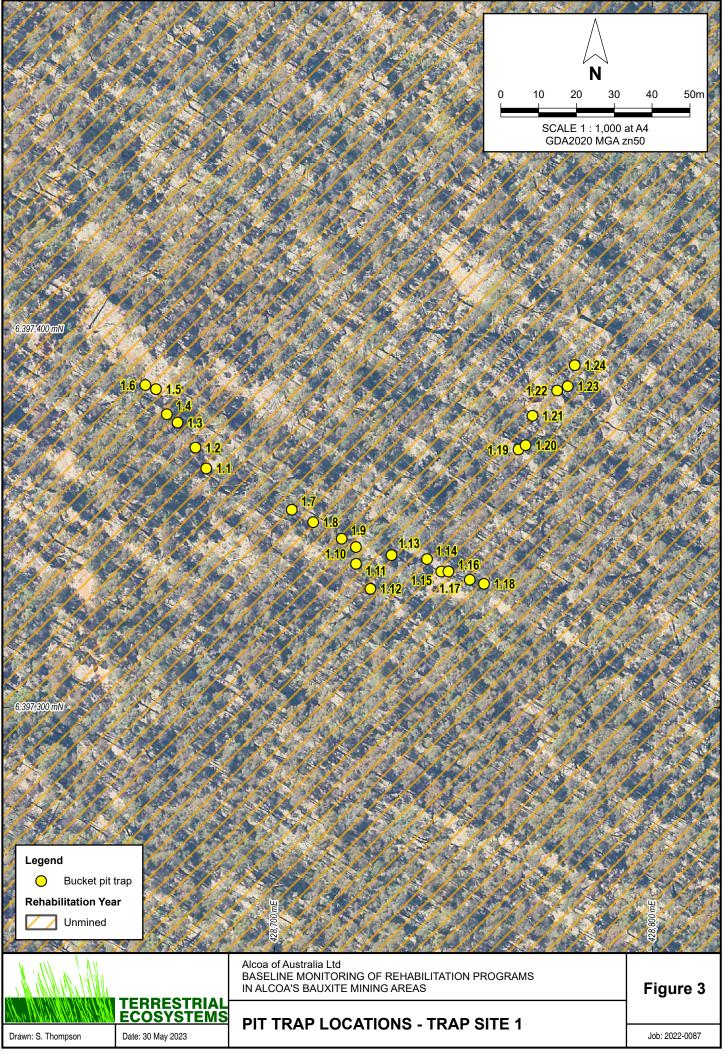
# 6. **REFERENCES**

- Andersen, A. N., L. D. Einoder, A. Fisher, B. Hill, and S. K. Oberprieler. 2022. Faunal standards for the restoration of terrestrial ecosystems: a framework and its application to a high-profile case study. Restoration Ecology **31**.
- Australian Government. 2016. Mine Rehabilitation Leading Practice Sustainable Development Program for the Mining Industry. Canberra.
- Bradshaw, A. D. 1984. Ecological principles and land reclamation practice. Landscape Planning 11:35-48.
- Catling, P. C. 1988. Similarities and Contrasts in the diets of foxes, *Vulpes vulpes*, and cats, *Felis catus*, relative to fluctuating prey populations and drought. Australian Wildlife Research **15**:307-317.
- Colwell, R. K., and J. A. Coddington. 1994. Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society of London, Series B. **345**:101-118.
- Cross, S. L., P. W. Bateman, and A. T. Cross. 2019. Restoration goals: Why are fauna still overlooked in the process of recovering functioning ecosystems and what can be done about it? Ecological Management & Restoration.
- Cross, S. L., H. S. Bradley, E. P. Tudor, M. D. Craig, S. Tomlinson, M. J. Bamford, P. W. Bateman, and A. T. Cross. 2021. A lifeof-mine approach to fauna monitoring is critical for recovering functional ecosystems to restored landscapes. Restoration Ecology.
- Ecologia Environment. 2010. Pipes and Pump Stations Joint Venture CW00803 Dwellingup New Source Targeted Survey for Mammals of Conservation Significance. Perth.
- Fleming, P. A., H. M. Crawford, A. M. Stobo-Wilson, S. J. Dawson, C. R. Dickman, S. J. Dundas, M. N. Gentle, T. M. Newsome, J. O'Connor, R. Palmer, J. Riley, E. G. Ritchie, J. Speed, G. Saunders, J. M. D. Stuart, E. Thompson, J. M. Turpin, and J. C. Z. Woinarski. 2021. Diet of the introduced red fox *Vulpes vulpes* in Australia: analysis of temporal and spatial patterns. Mammal Review **51**:508-527.
- Grant, C. D. 2006. State-and-Transition Successional Model for Bauxite Mining Rehabilitation in the Jarrah Forest of Western Australia. Restoration Ecology **14**:28-37.
- Hayek, L. C., and M. A. Buzas. 1997. Surveying natural populations. Columbia University Press, New York.
- J N Dunlop & Associates. 1987. A Fauna Assessment of Four Water Supply Sources in the Darling Ranges.
- Kabay, D. 2009. Monitoring for Wungong Catchment Forest Thinning Project KPI 11 Fauna.
- Kempton, R. A., and L. R. Taylor. 1974. Log-series and log-normal parameters as diversity discriminants for the *Lepidoptera*. Journal of Animal Ecology **43**:381-399.
- Magurran, A. E. 1988. Ecological diversity and its measurement. Princeton University Press, Princeton, New Jersey.
- Magurran, A. E. 2004. Measuring biological diversity. Blackwell, Oxford.
- Murphy, B. P., L.-A. Woolley, H. M. Geyle, S. M. Legge, R. Palmer, C. R. Dickman, J. Augusteyn, S. C. Brown, S. Comer, T. S. Doherty, C. Eager, G. Edwards, D. A. Fordham, D. Harley, P. J. McDonald, H. McGregor, K. E. Moseby, C. Myers, J. Read, J. Riley, D. Stokeld, G. J. Trewella, J. M. Turpin, and J. C. Z. Woinarski. 2019. Introduced cats (*Felis catus*) eating a continental fauna: The number of mammals killed in Australia. Biological Conservation 237:28-40.
- National Feral Pig Action Plan Steering Group. 2021. National Feral Pig Action Plan: 2021-2031. Canberra.
- Ninox Wildlife Consulting. 1989. A Vegetation and Vertebrate Fauna Assessment of Seven Proposed Mining Areas near Jarrahdale, Western Australia. Perth.
- Pisces Conservation Ltd. 2010. Species diversity and richness IV. Pisces Conservation Ltd, England.
- Smith, B., and J. B. Wilson. 1996. A consumer's guide to evenness measures. Oikos 76:70-82.
- Thompson, G. G., and S. A. Thompson. 2007a. Early and late colonizers in mine site rehabilitated waste dumps in the Goldfields of Western Australia. Pacific Conservation Biology **13**:235-243.
- Thompson, G. G., and S. A. Thompson. 2007b. Usefulness of funnel traps in catching small reptiles and mammals, with comments on the effectiveness of the alternatives? Wildlife Research **34**:491-497.

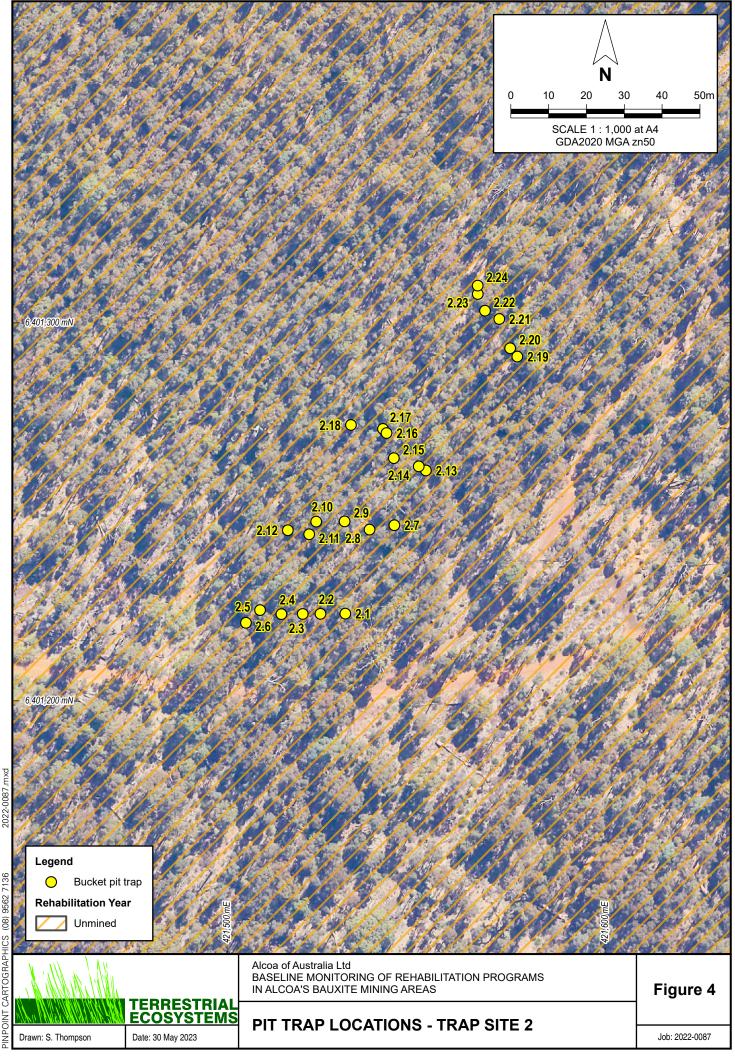


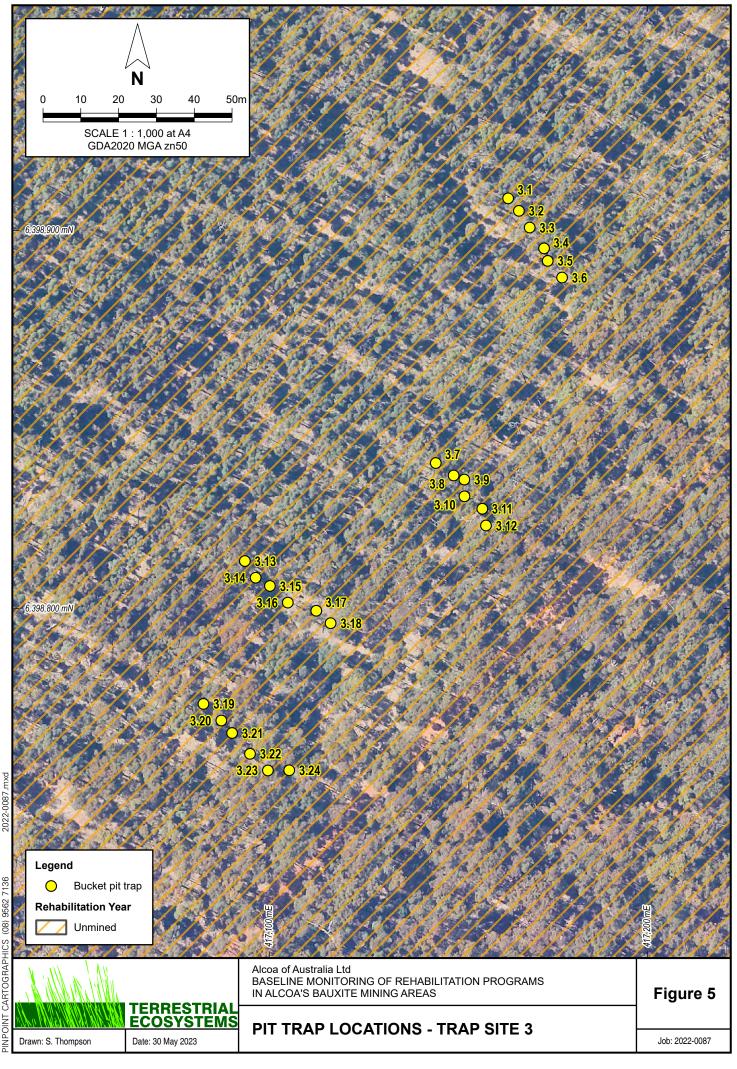

- Thompson, S. A. 2004. Mine site rehabilitation index using reptile assemblage as a bio-indicator. PhD. Edith Cowan University, Perth.
- Thompson, S. A., and G. G. Thompson. 2003. The western bearded dragon, *Pogona minor*, (Squamata: Agamidae): An early lizard coloniser of rehabilitated areas. Journal of the Royal Society of Western Australia **86**:1-6.
- Wardell-Johnson, G. 1982. A Vertebrate Fauna Survey of the Western Australian High Rainfall Forest of the Serpentine Area.
- Woinarski, J. C. Z., S. M. Legge, L. A. Woolley, R. Palmer, C. R. Dickman, J. Augusteyn, T. S. Doherty, G. Edwards, H. Geyle, H. McGregor, J. Riley, J. Turpin, and B. P. Murphy. 2020. Predation by introduced cats *Felis catus* on Australian frogs: compilation of species records and estimation of numbers killed. Wildlife Research.
- Woinarski, J. C. Z., S. L. South, P. Drummond, G. R. Johnston, and A. Nankivell. 2018. The diet of the feral cat (*Felis catus*), red fox (*Vulpes vulpes*) and dog (*Canis familiaris*) over a three-year period at Witchelina Reserve, in arid South Australia. Australian Mammalogy **40**:204-213.
- Woinarski, J. C. Z., A. M. Stobo-Wilson, H. M. Crawford, S. J. Dawson, C. R. Dickman, T. S. Doherty, P. A. Fleming, S. T. Garnett, M. N. Gentle, S. M. Legge, T. M. Newsome, R. Palmer, M. W. Rees, E. G. Ritchie, J. Speed, J.-M. Stuart, E. Thompson, J. Turpin, and B. P. Murphy. 2021. Compounding and complementary carnivores: Australian bird species eaten by the introduced European red fox Vulpes vulpes and domestic cat Felis catus. Bird Conservation International:1-17.
- Wolda, H. 1981. Similarity indices, sample size and diversity. Oecologia 50:296-302.
- Woolley, L.-A., B. P. Murphy, H. M. Geyle, S. M. Legge, R. A. Palmer, C. R. Dickman, T. S. Doherty, G. P. Edwards, J. Riley, J. M. Turpin, and J. C. Z. Woinarski. 2020. Introduced cats eating a continental fauna: invertebrate consumption by feral cats (*Felis catus*) in Australia. Wildlife Research 47:610-623.
- Woolley, L. A., H. M. Geyle, B. P. Murphy, S. M. Legge, R. Palmer, C. R. Dickman, J. Augusteyn, S. Comer, T. S. Doherty, C. Eager, G. Edwards, D. K. P. Harley, I. Leiper, P. J. McDonald, H. W. McGregor, K. E. Moseby, C. Myers, J. L. Read, J. Riley, D. Stokeld, J. M. Turpin, and J. C. Z. Woinarski. 2019. Introduced cats *Felis catus* eating a continental fauna: inventory and traits of Australian mammal species killed. Mammal Review **49**:354-368.


# Figures

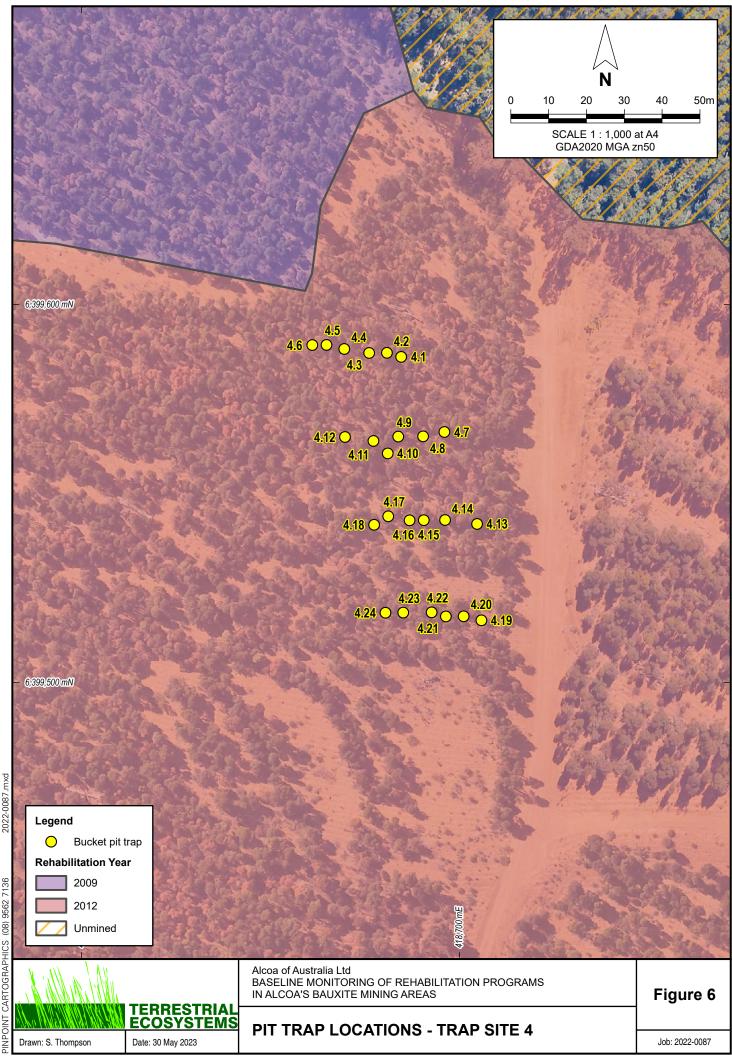

DETECTION DOG

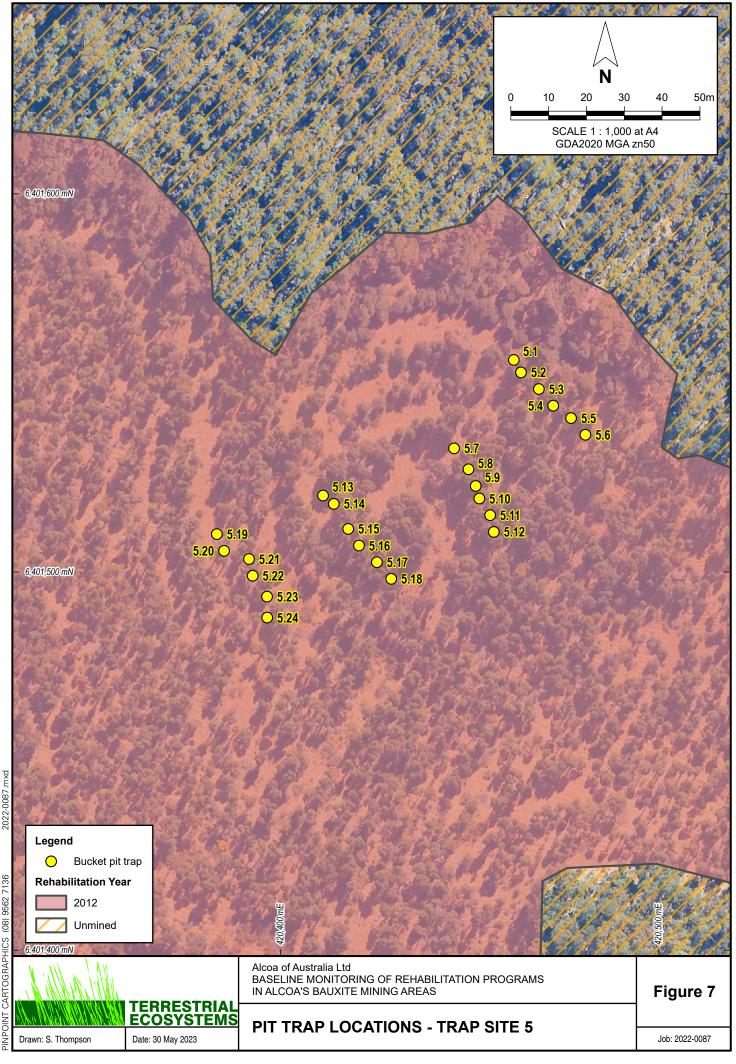
Baseline Monitoring of Rehabilitation Programs Alcoa's Bauxite Mining Areas

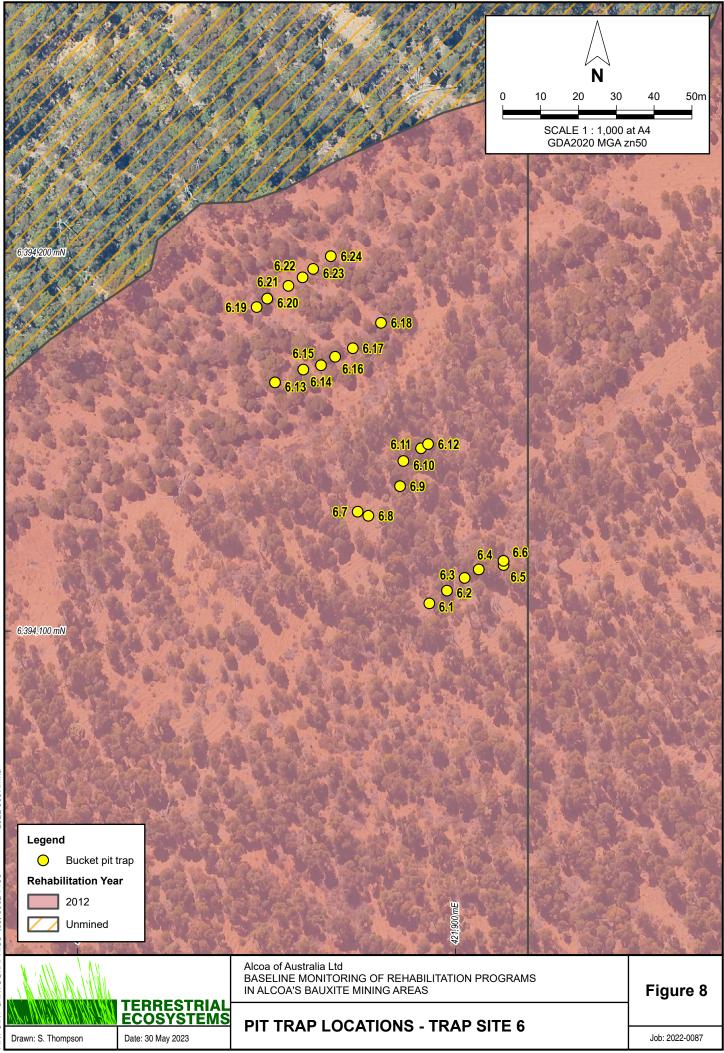




PINPOINT CARTOGRAPHICS (08) 9562 7136 2022-0087.mxd



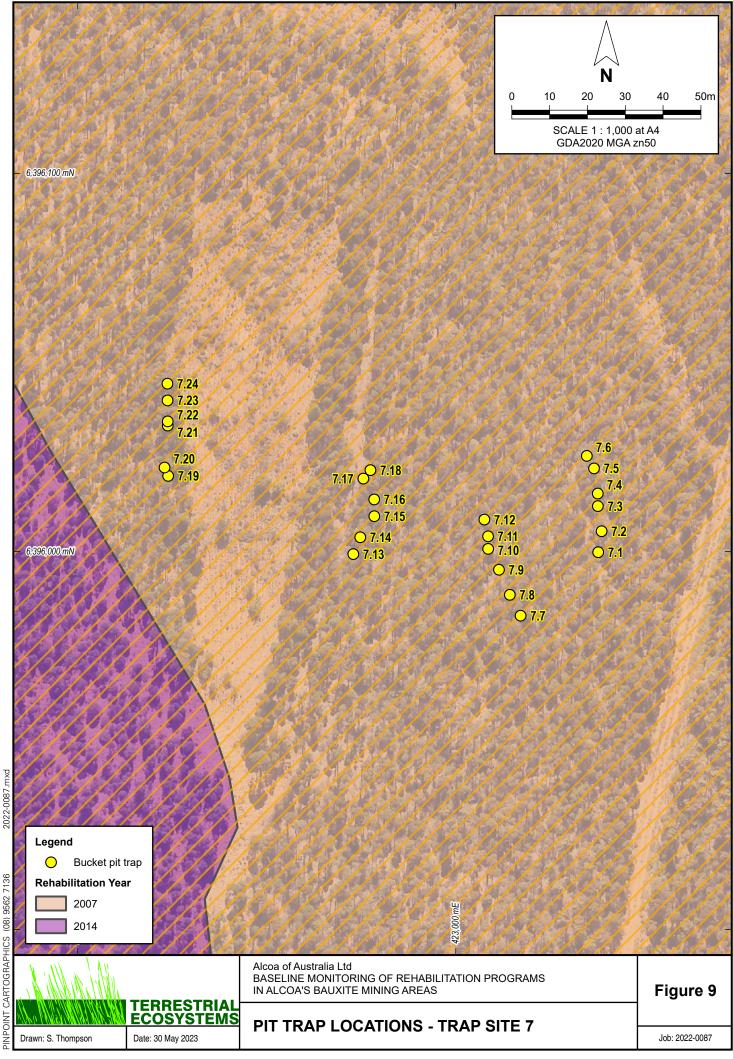




PINPOINT CARTOGRAPHICS (08) 9562 7136

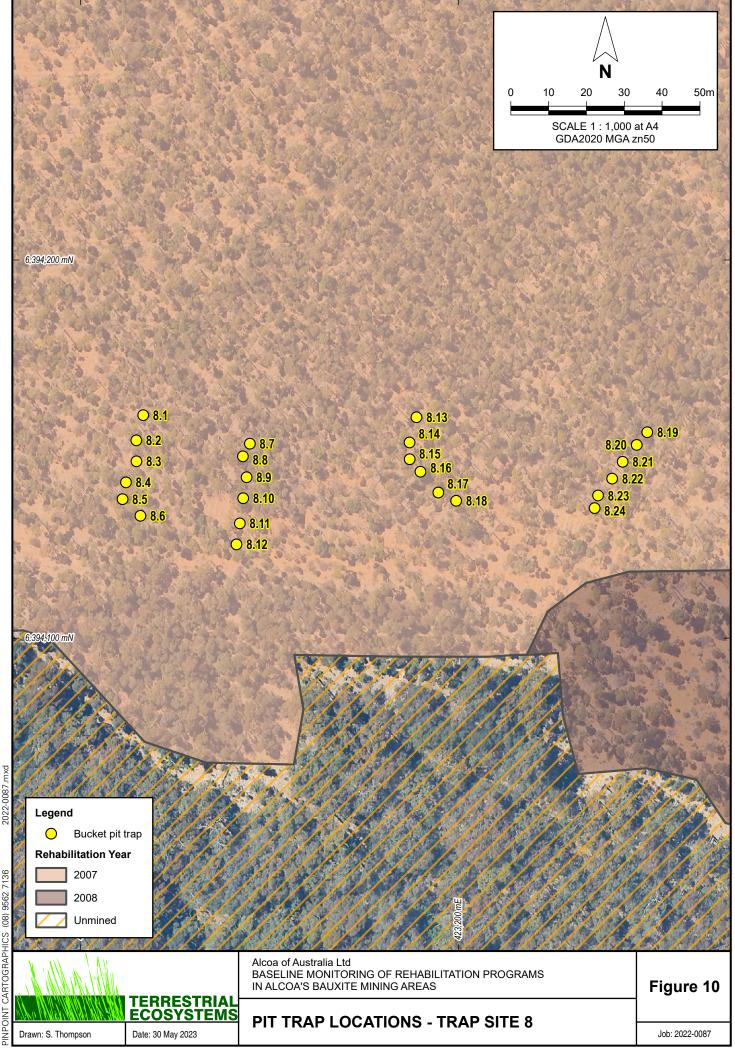




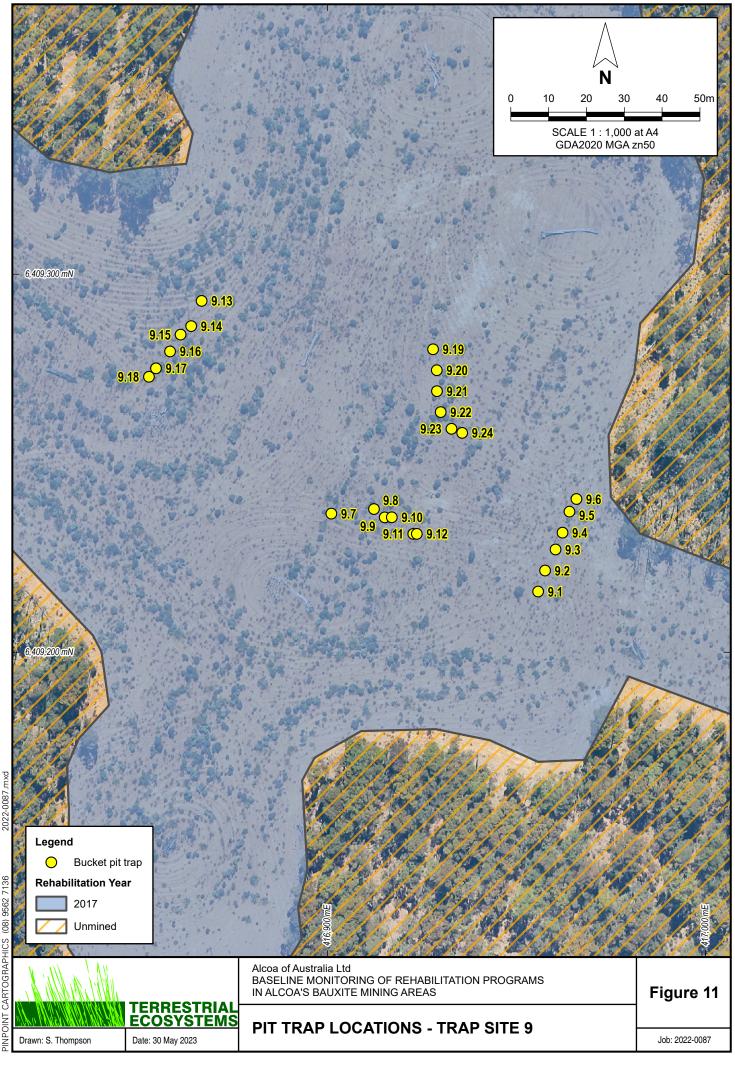

DA BT

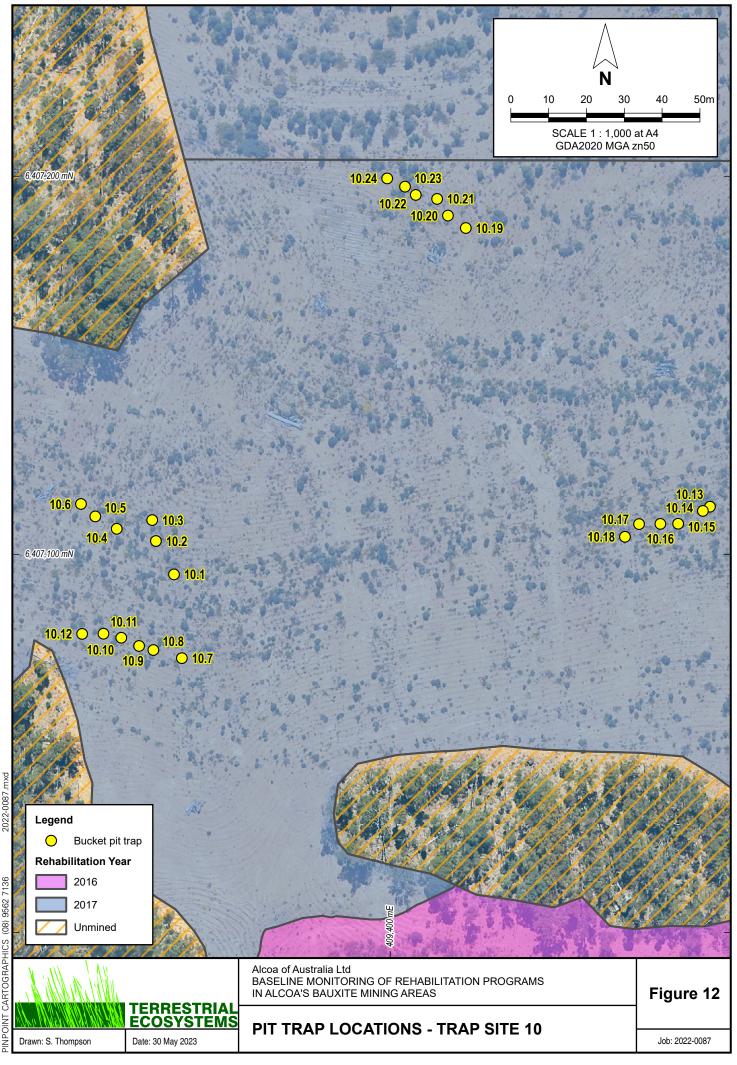


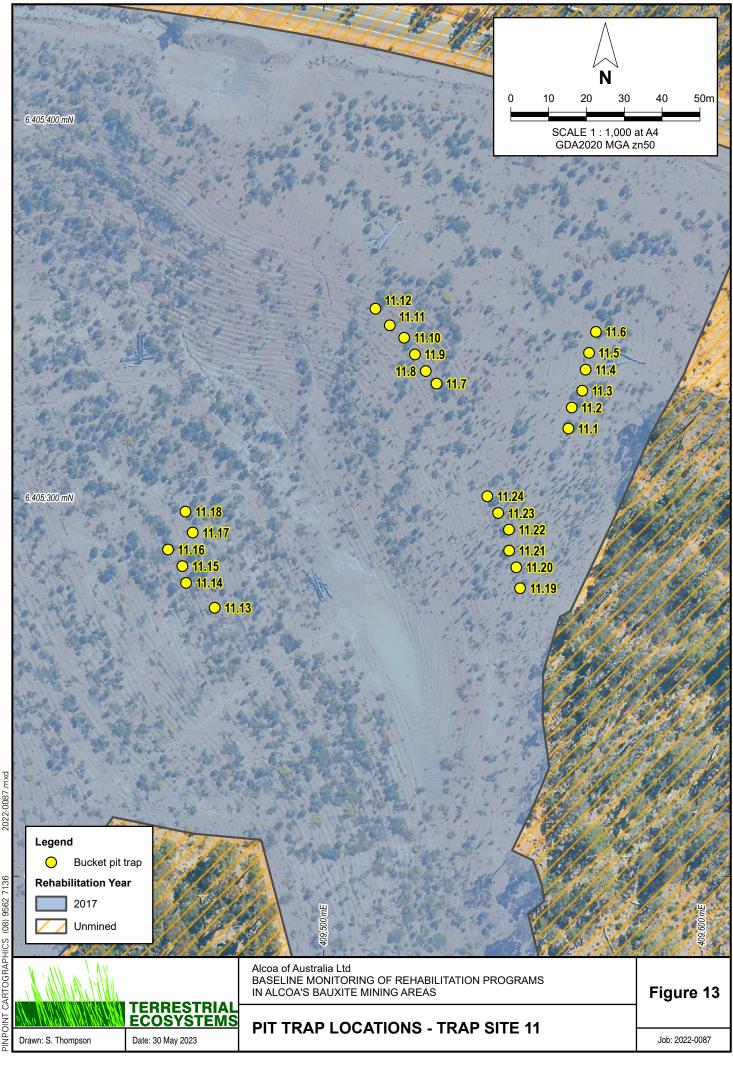


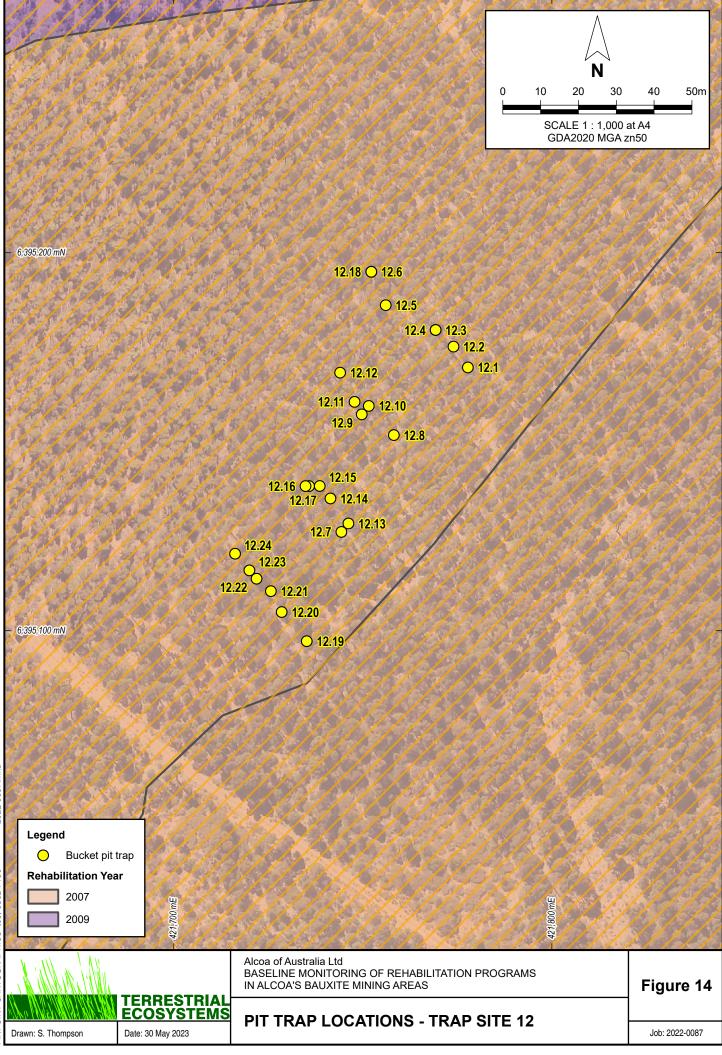



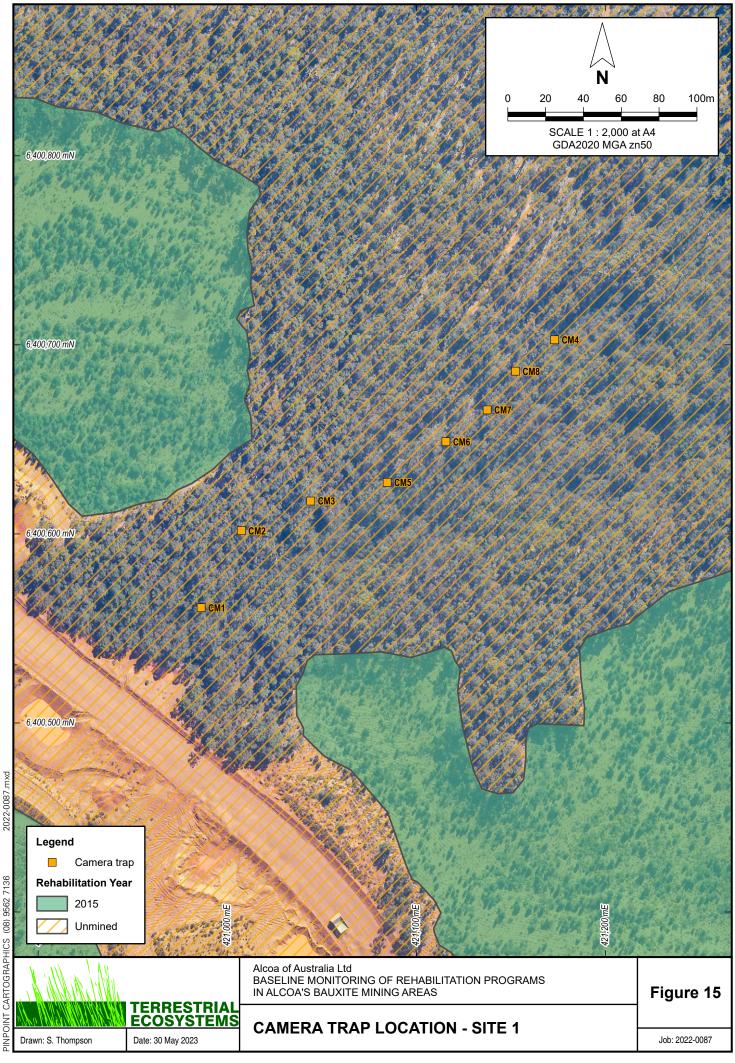

6 2022-0087.mxd

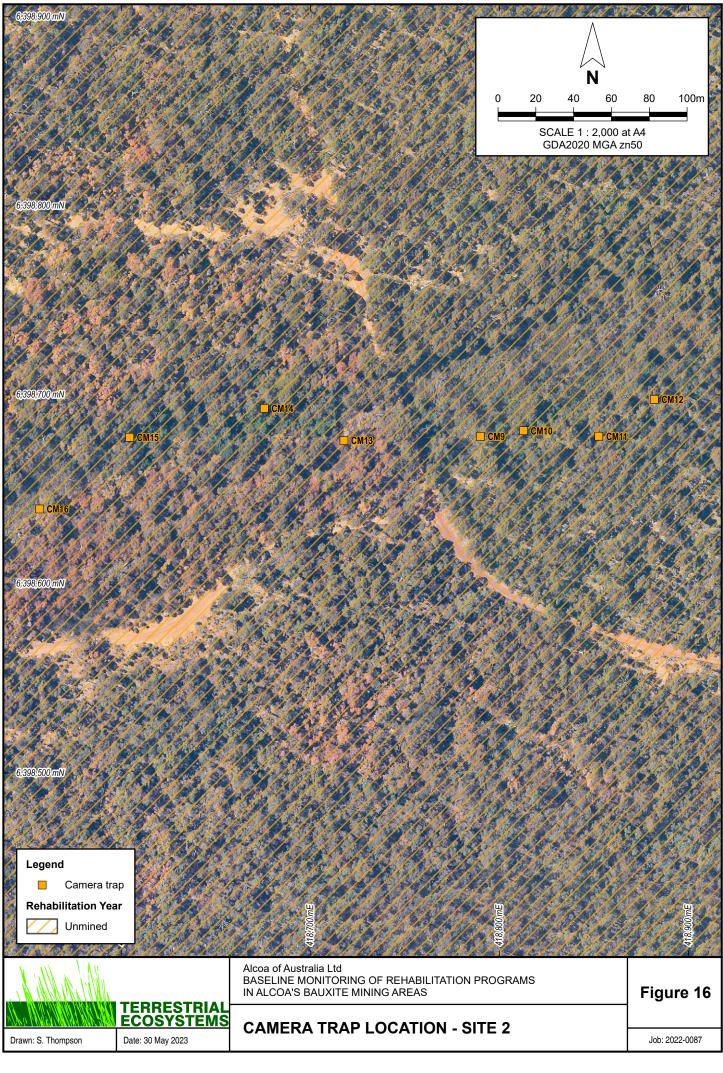

NPOINT CARTOGRAPHICS (08) 9562 7136



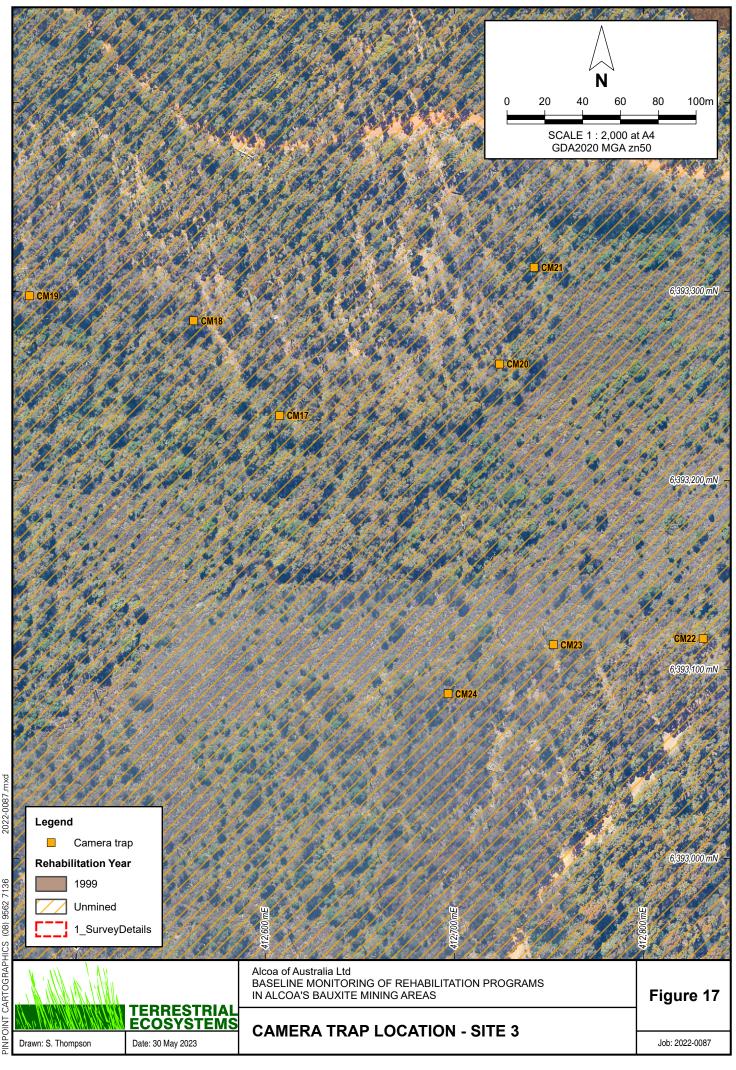


TINICAINIA

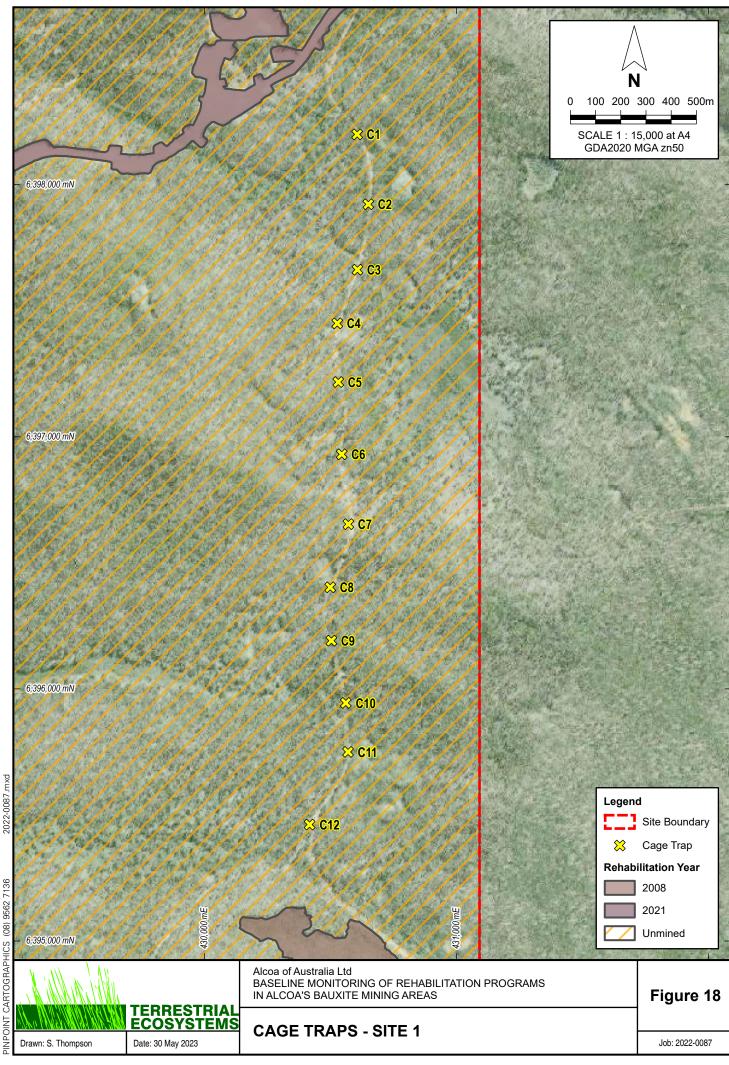




(08) 9562 7136 OGRAPHICS ŭ ∕⊐ TINICAINIA





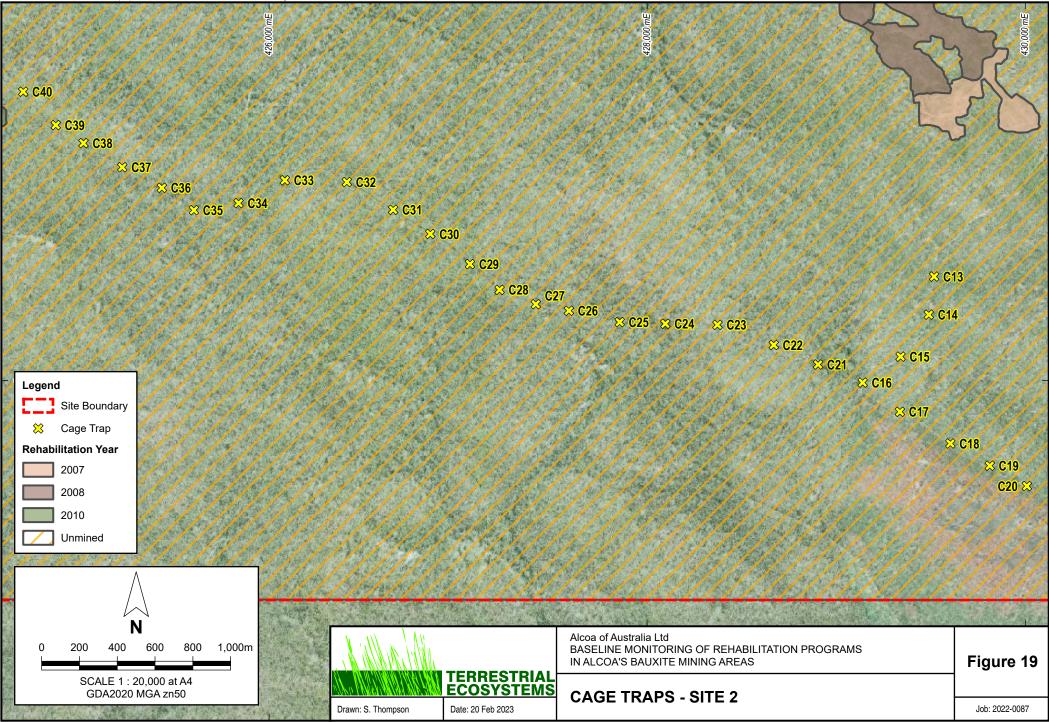



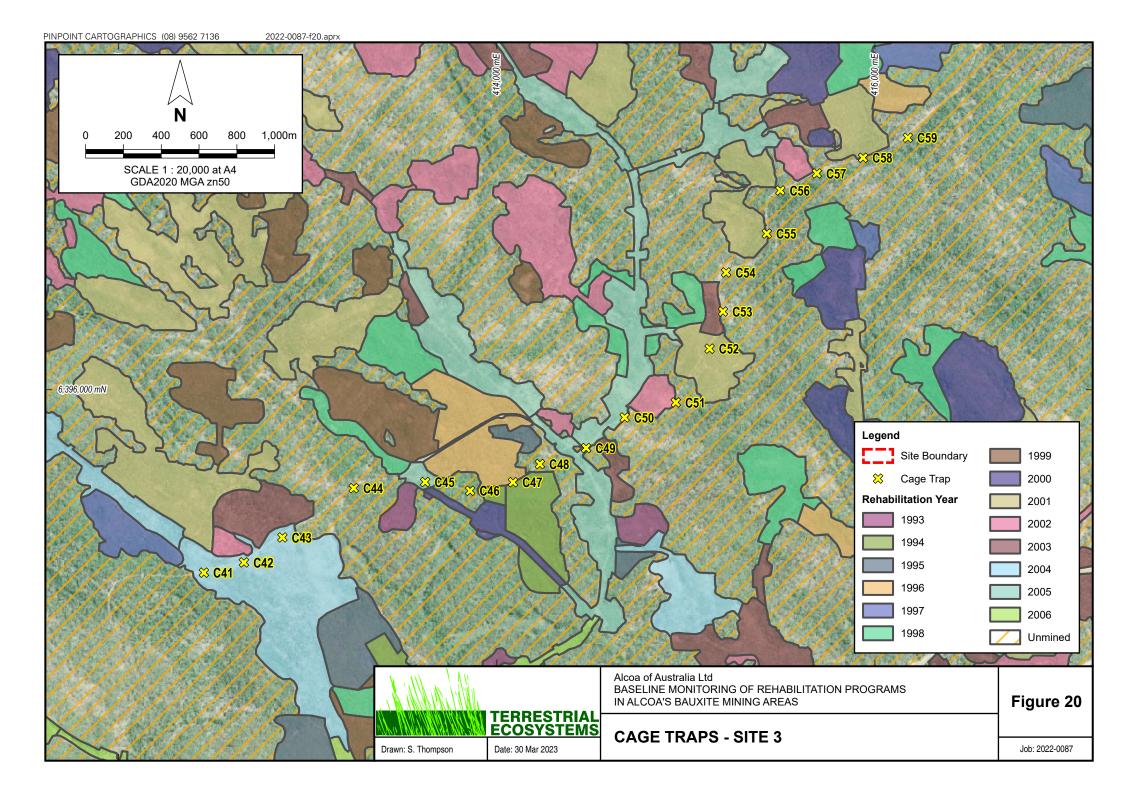



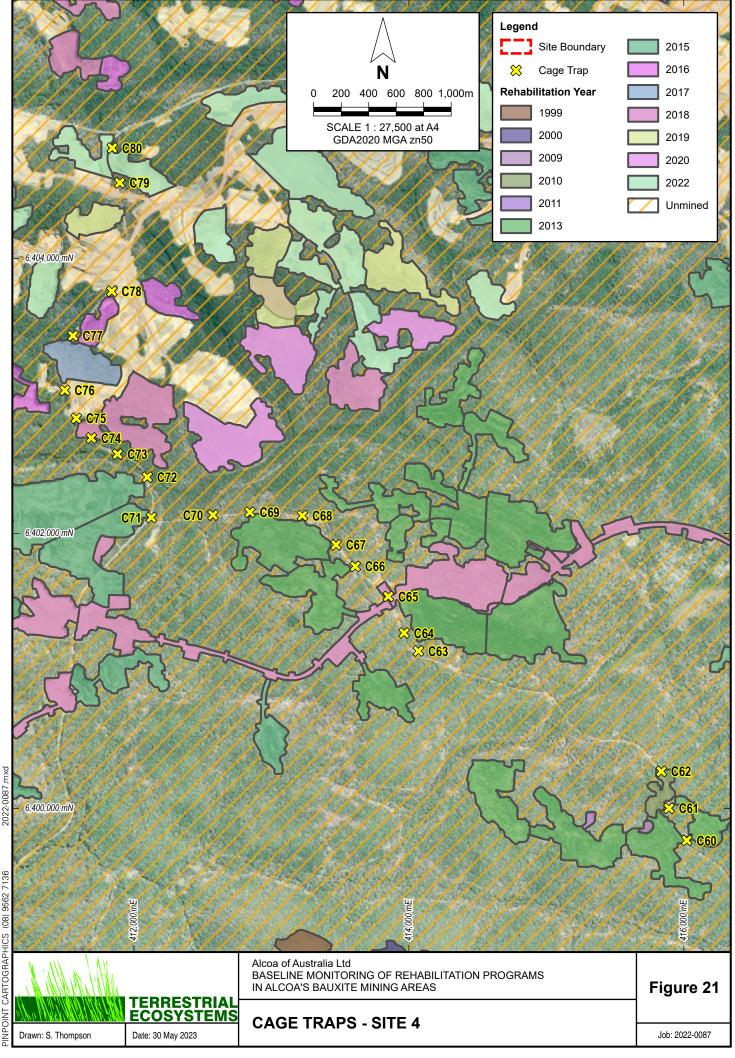





PINPOINT CARTOGRAPHICS (08) 9562 7136





9562 7136 (08) **DGRAPHICS** 4 PINPC

PINPOINT CARTOGRAPHICS (08) 9562 7136

2022-0087-f19.aprx







(08) 9562 7136 "OGRAPHICS CART PINPOINT

## Appendix A. Images of trapping sites

Baseline Monitoring of Rehabilitation Programs Alcoa's Bauxite Mining Areas

DETECTION DOC





Plate 16. Site 1 unmined

Plate 17. Site 1 unmined



Plate 18. Site 2 unmined

Plate 19. Site 2 unmined



Plate 20. Site 3 unmined

Plate 21. Site 3 unmined





Plate 22. Site 4 10-year rehabilitation

Plate 23. Site 4 10-year rehabilitation



Plate 24. Site 5 10-year rehabilitation

Plate 25. Site 5 10-year rehabilitation



Plate 26. Site 6 10-year rehabilitation

Plate 27. Site 6 10-year rehabilitation





Plate 28. Site 7 15-year rehabilitation

Plate 29. Site 7 15-year rehabilitation



Plate 30. Site 8 15-year rehabilitation

Plate 31. Site8 15-year rehabilitation



Plate 32. Site 9 5-year rehabilitation

Plate 33. Site 9 5-year rehabilitation





Plate 34. Site 10 5-year rehabilitation

Plate 35. Site 10 5-year rehabilitation



Plate 36. Site 10 5-year rehabilitation

Plate 37. Site 10 5-year rehabilitation



Plate 38. Site 10 15-year rehabilitation

Plate 39. Site 10 15-year rehabilitation

# Appendix B.

### **Trapping site coordinates**

Baseline Monitoring of Rehabilitation Programs Alcoa's Bauxite Mining Areas

DETECTION DOC



#### Table 8. Trap site coordinates and opening and closing dates

| Trap # | Easting | Northing             | Date opened | Date closed |
|--------|---------|----------------------|-------------|-------------|
|        |         | Pit and funnel traps |             |             |
| 1.A    | 428680  | 6397362              | 9/1/2023    | 21/1/2023   |
| 1.B    | 428703  | 6397351              | 9/1/2023    | 21/1/2023   |
| 1.C    | 428729  | 6397339              | 9/1/2023    | 21/1/2023   |
| 1.D    | 428763  | 6397366              | 9/1/2023    | 21/1/2023   |
| 2.A    | 421553  | 6401260              | 9/1/2023    | 21/1/2023   |
| 2.B    | 421576  | 6401290              | 9/1/2023    | 21/1/2023   |
| 2.C    | 421531  | 6401223              | 9/1/2023    | 21/1/2023   |
| 2.D    | 421544  | 6401247              | 9/1/2023    | 21/1/2023   |
| 3.A    | 417176  | 6398886              | 9/1/2023    | 21/1/2023   |
| 3.B    | 417156  | 6398820              | 9/1/2023    | 21/1/2023   |
| 3.C    | 417115  | 6398794              | 9/1/2023    | 21/1/2023   |
| 3.D    | 417104  | 6398755              | 9/1/2023    | 21/1/2023   |
| 4.A    | 418660  | 6399587              | 9/1/2023    | 21/1/2023   |
| 4.B    | 418668  | 6399563              | 9/1/2023    | 21/1/2023   |
| 4.C    | 418676  | 6399540              | 9/1/2023    | 21/1/2023   |
| 4.D    | 418679  | 6399517              | 9/1/2023    | 21/1/2023   |
| 5.A    | 420382  | 6401508              | 9/1/2023    | 21/1/2023   |
| 5.B    | 420410  | 6401518              | 9/1/2023    | 21/1/2023   |
| 5.C    | 420455  | 6401509              | 9/1/2023    | 21/1/2023   |
| 5.D    | 420479  | 6401534              | 9/1/2023    | 21/1/2023   |
| 6.A    | 421911  | 6394117              | 9/1/2023    | 21/1/2023   |
| 6.B    | 421891  | 6394147              | 9/1/2023    | 21/1/2023   |
| 6.C    | 421879  | 6394180              | 9/1/2023    | 21/1/2023   |
| 6.D    | 421866  | 6394197              | 9/1/2023    | 21/1/2023   |
| 7.A    | 422922  | 6396018              | 9/1/2023    | 21/1/2023   |
| 7.В    | 422976  | 6396020              | 9/1/2023    | 21/1/2023   |
| 7.C    | 423016  | 6395981              | 9/1/2023    | 21/1/2023   |
| 7.D    | 423033  | 6396023              | 9/1/2023    | 21/1/2023   |
| 8.A    | 423113  | 6394130              | 9/1/2023    | 21/1/2023   |
| 8.B    | 423140  | 6394123              | 9/1/2023    | 21/1/2023   |
| 8.C    | 423198  | 6394134              | 9/1/2023    | 21/1/2023   |

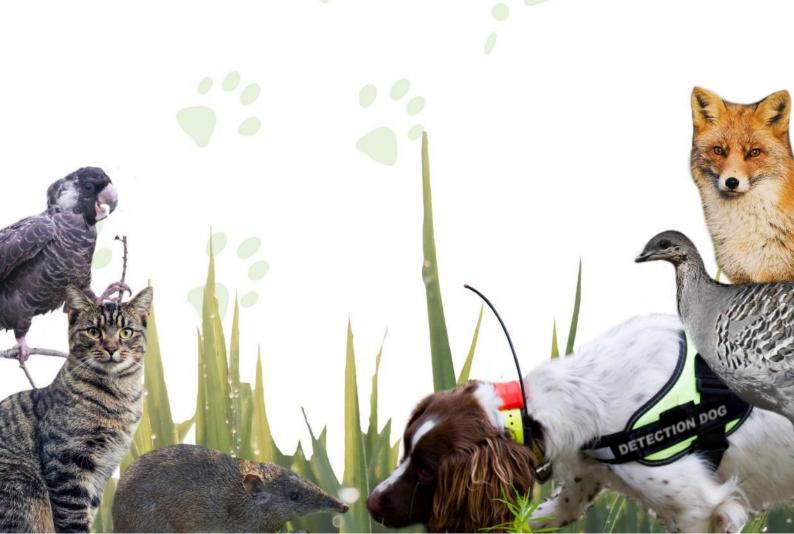


| Trap # | Easting | Northing     | Date opened | Date closed |
|--------|---------|--------------|-------------|-------------|
| 8.D    | 423235  | 6394132      | 9/1/2023    | 21/1/2023   |
| 9.A    | 416954  | 6409214      | 9/1/2023    | 21/1/2023   |
| 9.B    | 416922  | 6409229      | 9/1/2023    | 21/1/2023   |
| 9.C    | 416934  | 6409256      | 9/1/2023    | 21/1/2023   |
| 9.D    | 416851  | 6409271      | 9/1/2023    | 21/1/2023   |
| 10.A   | 409342  | 6407093      | 9/1/2023    | 21/1/2023   |
| 10.B   | 409343  | 6407071      | 9/1/2023    | 21/1/2023   |
| 10.C   | 409483  | 6407111      | 9/1/2023    | 21/1/2023   |
| 10.D   | 409398  | 6407197      | 9/1/2023    | 21/1/2023   |
| 11.A   | 409470  | 6405269      | 9/1/2023    | 21/1/2023   |
| 11.B   | 409550  | 6405274      | 9/1/2023    | 21/1/2023   |
| 11.C   | 409528  | 6405328      | 9/1/2023    | 21/1/2023   |
| 11.D   | 409563  | 6405316      | 9/1/2023    | 21/1/2023   |
| 12.A   | 421738  | 6395132      | 9/1/2023    | 21/1/2023   |
| 12.B   | 421743  | 6395166      | 9/1/2023    | 21/1/2023   |
| 12.C   | 421751  | 6395192      | 9/1/2023    | 21/1/2023   |
| 12.D   | 421715  | 6395118      | 9/1/2023    | 21/1/2023   |
|        |         | Camera traps |             |             |
| CM1    | 420985  | 6400559      | 8/01/2023   | 20/01/2023  |
| CM2    | 421006  | 6400600      | 8/01/2023   | 20/01/2023  |
| СМЗ    | 421043  | 6400615      | 8/01/2023   | 20/01/2023  |
| CM4    | 421151  | 6400684      | 8/01/2023   | 20/01/2023  |
| CM5    | 421136  | 6400664      | 8/01/2023   | 20/01/2023  |
| CM6    | 421114  | 6400647      | 8/01/2023   | 20/01/2023  |
| CM7    | 421083  | 6400625      | 8/01/2023   | 20/01/2023  |
| CM8    | 421172  | 6400701      | 8/01/2023   | 20/01/2023  |
| CM9    | 418788  | 6398676      | 8/01/2023   | 20/01/2023  |
| CM10   | 418811  | 6398679      | 8/01/2023   | 20/01/2023  |
| CM11   | 418851  | 6398676      | 8/01/2023   | 20/01/2023  |
| CM12   | 418880  | 6398696      | 8/01/2023   | 20/01/2023  |
| CM13   | 418716  | 6398674      | 8/01/2023   | 20/01/2023  |
| CM14   | 418674  | 6398691      | 8/01/2023   | 20/01/2023  |
| CM15   | 418603  | 6398676      | 8/01/2023   | 20/01/2023  |



| Trap # | Easting | Northing   | Date opened | Date closed |
|--------|---------|------------|-------------|-------------|
| CM16   | 418555  | 6398638    | 8/01/2023   | 20/01/2023  |
| CM17   | 412606  | 6393232    | 8/01/2023   | 20/01/2023  |
| CM18   | 412561  | 6393283    | 8/01/2023   | 20/01/2023  |
| CM19   | 412474  | 6393296    | 8/01/2023   | 20/01/2023  |
| CM20   | 412722  | 6393260    | 8/01/2023   | 20/01/2023  |
| CM21   | 412741  | 6393311    | 8/01/2023   | 20/01/2023  |
| CM22   | 412830  | 6393114    | 8/01/2023   | 20/01/2023  |
| CM23   | 412751  | 6393111    | 8/01/2023   | 20/01/2023  |
| CM24   | 412695  | 6393085    | 8/01/2023   | 20/01/2023  |
|        |         | Cage traps |             |             |
| C1     | 430604  | 6398198    | 8/01/2023   | 18/1/2023   |
| C2     | 430648  | 6397921    | 8/01/2023   | 18/1/2023   |
| C3     | 430605  | 6397661    | 8/01/2023   | 18/1/2023   |
| C4     | 430525  | 6397448    | 8/01/2023   | 18/1/2023   |
| C5     | 430529  | 6397215    | 8/01/2023   | 18/1/2023   |
| C6     | 430543  | 6396929    | 8/01/2023   | 18/1/2023   |
| С7     | 430569  | 6396652    | 8/01/2023   | 18/1/2023   |
| C8     | 430497  | 6396401    | 8/01/2023   | 18/1/2023   |
| С9     | 430502  | 6396189    | 8/01/2023   | 18/1/2023   |
| C10    | 430559  | 6395942    | 8/01/2023   | 18/1/2023   |
| C11    | 430568  | 6395748    | 8/01/2023   | 18/1/2023   |
| C12    | 430416  | 6395460    | 8/01/2023   | 18/1/2023   |
| C13    | 429517  | 6390549    | 8/01/2023   | 18/1/2023   |
| C14    | 429488  | 6390347    | 8/01/2023   | 18/1/2023   |
| C15    | 429339  | 6390125    | 8/01/2023   | 18/1/2023   |
| C16    | 429138  | 6389988    | 8/01/2023   | 18/1/2023   |
| C17    | 429336  | 6389833    | 8/01/2023   | 18/1/2023   |
| C18    | 429602  | 6389666    | 8/01/2023   | 18/1/2023   |
| C19    | 429811  | 6389548    | 8/01/2023   | 18/1/2023   |
| C20    | 430007  | 6389440    | 8/01/2023   | 18/1/2023   |
| C21    | 428903  | 6390083    | 8/01/2023   | 18/1/2023   |
| C22    | 428668  | 6390187    | 8/01/2023   | 18/1/2023   |
| C23    | 428371  | 6390293    | 8/01/2023   | 18/1/2023   |




| C2542785363903078/01/202318/1/2023C2642758563903688/01/202318/1/2023C27427106390428/01/202318/1/2023C2842721863904788/01/202318/1/2023C2942706163906148/01/202318/1/2023C3042665263907248/01/202318/1/2023C3142665563909028/01/202318/1/2023C324261063910488/01/202318/1/2023C3342608263909378/01/202318/1/2023C3442583763909378/01/202318/1/2023C3542560163900008/01/202318/1/2023C364254326391188/01/202318/1/2023C374252263911278/01/202318/1/2023C3842501763915278/01/202318/1/2023C4042469963915278/01/202318/1/2023C414126463951018/01/202318/1/2023C4241361963951018/01/202318/1/2023C4441324263951018/01/202318/1/2023C454136196395098/01/202318/1/2023C464138576395418/01/202318/1/2023C474140846395098/01/202318/1/2023C484142266395108/01/202318/1/2023C4941467463955098/01/202318/1/2023C494146                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Trap # | Easting | Northing | Date opened | Date closed |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|----------|-------------|-------------|
| C2642758563903688/01/202318/1/2023C27427106390428/01/202318/1/2023C2842721863904788/01/202318/1/2023C2942706163906148/01/202318/1/2023C304266526390928/01/202318/1/2023C3142665363909028/01/202318/1/2023C3242641063910888/01/202318/1/2023C3342608263909018/01/202318/1/2023C3442583763909378/01/202318/1/2023C3542560163909008/01/202318/1/2023C364254326391188/01/202318/1/2023C3742522263911278/01/202318/1/2023C3842501763915248/01/202318/1/2023C3942487163915278/01/202318/1/2023C4042469963955108/01/202318/1/2023C414126463955108/01/202318/1/2023C4241361963955108/01/202318/1/2023C4341426663955098/01/202318/1/2023C4441324263951018/01/202318/1/2023C4541361963955108/01/202318/1/2023C4541426463955098/01/202318/1/2023C4541426463955098/01/202318/1/2023C4541467463955108/01/202318/1/2023C46 <td< th=""><th>C24</th><th>428095</th><th>6390299</th><th>8/01/2023</th><th>18/1/2023</th></td<>                                                                                                                                                                                                                                                                                                                                                                       | C24    | 428095  | 6390299  | 8/01/2023   | 18/1/2023   |
| C2742741063904028/01/202318/1/2023C2842721863904788/01/202318/1/2023C2942706163906148/01/202318/1/2023C3042665263907748/01/202318/1/2023C3142665563909028/01/202318/1/2023C3242641063910488/01/202318/1/2023C3342608263910588/01/202318/1/2023C3442583763909028/01/202318/1/2023C3542560163909038/01/202318/1/2023C3642583763909038/01/202318/1/2023C3742522263911278/01/202318/1/2023C3842501763915248/01/202318/1/2023C3942487163913508/01/202318/1/2023C4042469963915278/01/202318/1/2023C4141244963950318/01/202318/1/2023C424126616395048/01/202318/1/2023C434128646395178/01/202318/1/2023C4441324263954778/01/202318/1/2023C4541361963950508/01/202318/1/2023C4641385763954648/01/202318/1/2023C4741408463955098/01/202318/1/2023C484142266395058/01/202318/1/2023C4941467463956108/01/202318/1/2023C41<                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C25    | 427853  | 6390307  | 8/01/2023   | 18/1/2023   |
| C28         427218         6390478         8/01/2023         18/1/2023           C29         427061         6390614         8/01/2023         18/1/2023           C30         426652         6390774         8/01/2023         18/1/2023           C31         426655         6390902         8/01/2023         18/1/2023           C32         426410         6391048         8/01/2023         18/1/2023           C33         426082         6391058         8/01/2023         18/1/2023           C34         425837         6390937         8/01/2023         18/1/2023           C35         425601         6390900         8/01/2023         18/1/2023           C36         425837         6390937         8/01/2023         18/1/2023           C37         425601         6390900         8/01/2023         18/1/2023           C36         425837         6391127         8/01/2023         18/1/2023           C37         425222         6391127         8/01/2023         18/1/2023           C38         424871         6391527         8/01/2023         18/1/2023           C41         412469         6395031         8/01/2023         18/1/2023           C42                                                                                                   | C26    | 427585  | 6390368  | 8/01/2023   | 18/1/2023   |
| 427061         6390614         8/01/2023         18/1/2023           C30         426852         6390774         8/01/2023         18/1/2023           C31         426655         6390902         8/01/2023         18/1/2023           C32         426410         6391048         8/01/2023         18/1/2023           C33         426082         6391058         8/01/2023         18/1/2023           C34         425837         6390907         8/01/2023         18/1/2023           C35         425601         6390900         8/01/2023         18/1/2023           C36         425432         6391018         8/01/2023         18/1/2023           C37         42522         6391127         8/01/2023         18/1/2023           C38         425017         6391527         8/01/2023         18/1/2023           C40         424699         6391527         8/01/2023         18/1/2023           C41         41264         6395031         8/01/2023         18/1/2023           C42         412661         6395050         8/01/2023         18/1/2023           C44         413242         6395171         8/01/2023         18/1/2023           C45         413619 <td< th=""><th>C27</th><th>427410</th><th>6390402</th><th>8/01/2023</th><th>18/1/2023</th></td<> | C27    | 427410  | 6390402  | 8/01/2023   | 18/1/2023   |
| C30         426852         6390774         8/01/2023         18/1/2023           C31         426655         6390902         8/01/2023         18/1/2023           C32         426410         6391048         8/01/2023         18/1/2023           C33         426082         6391058         8/01/2023         18/1/2023           C34         425837         6390937         8/01/2023         18/1/2023           C35         425601         639000         8/01/2023         18/1/2023           C36         425432         6391018         8/01/2023         18/1/2023           C36         425432         6391018         8/01/2023         18/1/2023           C37         425222         6391127         8/01/2023         18/1/2023           C38         425017         6391527         8/01/2023         18/1/2023           C40         424891         6395031         8/01/2023         18/1/2023           C41         412649         6395510         8/01/2023         18/1/2023           C42         413619         6395509         8/01/2023         18/1/2023           C43         413619         6395509         8/01/2023         18/1/2023           C44         4                                                                                          | C28    | 427218  | 6390478  | 8/01/2023   | 18/1/2023   |
| C31         426655         6390902         8/01/2023         18/1/2023           C32         426410         6391048         8/01/2023         18/1/2023           C33         426082         6391058         8/01/2023         18/1/2023           C34         425837         6390937         8/01/2023         18/1/2023           C35         425601         6390900         8/01/2023         18/1/2023           C36         425432         6391018         8/01/2023         18/1/2023           C37         425222         6391127         8/01/2023         18/1/2023           C38         425017         6391554         8/01/2023         18/1/2023           C39         424871         6391350         8/01/2023         18/1/2023           C40         424699         6395157         8/01/2023         18/1/2023           C41         412649         6395031         8/01/2023         18/1/2023           C42         412661         6395045         8/01/2023         18/1/2023           C43         412849         6395510         8/01/2023         18/1/2023           C44         413242         6395477         8/01/2023         18/1/2023           C45                                                                                                   | C29    | 427061  | 6390614  | 8/01/2023   | 18/1/2023   |
| C32         426410         6391048         8/01/2023         18/1/2023           C33         426082         6391058         8/01/2023         18/1/2023           C34         425837         6390937         8/01/2023         18/1/2023           C35         425601         6390900         8/01/2023         18/1/2023           C36         425432         6391018         8/01/2023         18/1/2023           C36         425432         6391018         8/01/2023         18/1/2023           C37         425222         6391127         8/01/2023         18/1/2023           C38         425017         6391254         8/01/2023         18/1/2023           C39         424871         6391350         8/01/2023         18/1/2023           C40         412449         6395031         8/01/2023         18/1/2023           C41         412661         6395085         8/01/2023         18/1/2023           C42         412649         6395102         8/01/2023         18/1/2023           C43         413242         6395509         8/01/2023         18/1/2023           C44         413242         6395509         8/01/2023         18/1/2023           C45                                                                                                   | C30    | 426852  | 6390774  | 8/01/2023   | 18/1/2023   |
| C33         426082         6391058         8/01/2023         18/1/2023           C34         425837         6390937         8/01/2023         18/1/2023           C35         425601         6390900         8/01/2023         18/1/2023           C36         425432         6391018         8/01/2023         18/1/2023           C36         425432         6391018         8/01/2023         18/1/2023           C37         425222         6391127         8/01/2023         18/1/2023           C38         425017         6391350         8/01/2023         18/1/2023           C39         424871         6391350         8/01/2023         18/1/2023           C40         424699         6391527         8/01/2023         18/1/2023           C41         412461         6395031         8/01/2023         18/1/2023           C42         412661         6395045         8/01/2023         18/1/2023           C43         412864         639517         8/01/2023         18/1/2023           C44         413242         6395477         8/01/2023         18/1/2023           C45         413619         6395509         8/01/2023         18/1/2023           C46         4                                                                                          | C31    | 426655  | 6390902  | 8/01/2023   | 18/1/2023   |
| C3442583763909378/01/202318/1/2023C3542560163909008/01/202318/1/2023C3642543263910188/01/202318/1/2023C3742522263911278/01/202318/1/2023C3842501763912548/01/202318/1/2023C3942487163913508/01/202318/1/2023C4042469963915278/01/202318/1/2023C4141244963950318/01/202318/1/2023C4241266163954778/01/202318/1/2023C4341361963955108/01/202318/1/2023C4441324263955098/01/202318/1/2023C4541361963955098/01/202318/1/2023C4641422663955098/01/202318/1/2023C4741408463955098/01/202318/1/2023C4841422663955098/01/202318/1/2023C5041467463955108/01/202318/1/2023C51415146395918/01/202318/1/2023C524151246395918/01/202318/1/2023C534152663956198/01/202318/1/2023C544152116396128/01/202318/1/2023C554154266396198/01/202318/1/2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C32    | 426410  | 6391048  | 8/01/2023   | 18/1/2023   |
| C3542560163909008/01/202318/1/2023C3642543263910188/01/202318/1/2023C3742522263911278/01/202318/1/2023C3842501763912548/01/202318/1/2023C3942487163913508/01/202318/1/2023C4042469963950318/01/202318/1/2023C4141244963950858/01/202318/1/2023C4241266163954778/01/202318/1/2023C434128646395108/01/202318/1/2023C4441324263954778/01/202318/1/2023C4541361963955098/01/202318/1/2023C464138576395648/01/202318/1/2023C4741408463955098/01/202318/1/2023C4841422663956058/01/202318/1/2023C504146746395818/01/202318/1/2023C5141512463962168/01/202318/1/2023C524151246396198/01/202318/1/2023C534154266396198/01/202318/1/2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C33    | 426082  | 6391058  | 8/01/2023   | 18/1/2023   |
| C3642543263910188/01/202318/1/2023C3742522263911278/01/202318/1/2023C3842501763912548/01/202318/1/2023C3942487163913508/01/202318/1/2023C4042469963915278/01/202318/1/2023C4141244963950318/01/202318/1/2023C4241266163950858/01/202318/1/2023C434132426395178/01/202318/1/2023C4441324263955108/01/202318/1/2023C4541361963955098/01/202318/1/2023C4641385763956448/01/202318/1/2023C4741408463955098/01/202318/1/2023C4841422663956058/01/202318/1/2023C5041467463956908/01/202318/1/2023C5141512463959318/01/202318/1/2023C5241512463956168/01/202318/1/2023C5441521163966198/01/202318/1/2023C5541542663966198/01/202318/1/2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C34    | 425837  | 6390937  | 8/01/2023   | 18/1/2023   |
| C3742522263911278/01/202318/1/2023C3842501763912548/01/202318/1/2023C3942487163913508/01/202318/1/2023C4042469963915278/01/202318/1/2023C4141244963950318/01/202318/1/2023C4241266163950858/01/202318/1/2023C4341286463952178/01/202318/1/2023C4441324263954778/01/202318/1/2023C4541361963955108/01/202318/1/2023C4641385763954648/01/202318/1/2023C474140846395098/01/202318/1/2023C4841422663956058/01/202318/1/2023C50411467463958518/01/202318/1/2023C51415216396198/01/202318/1/2023C5541542663968248/01/202318/1/2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C35    | 425601  | 6390900  | 8/01/2023   | 18/1/2023   |
| C38         425017         6391254         8/01/2023         18/1/2023           C39         424871         6391350         8/01/2023         18/1/2023           C40         424699         6391527         8/01/2023         18/1/2023           C41         412449         6395031         8/01/2023         18/1/2023           C42         412661         6395085         8/01/2023         18/1/2023           C43         412864         6395217         8/01/2023         18/1/2023           C44         413242         6395477         8/01/2023         18/1/2023           C45         413619         6395510         8/01/2023         18/1/2023           C46         413857         6395464         8/01/2023         18/1/2023           C47         414084         6395509         8/01/2023         18/1/2023           C48         414226         6395605         8/01/2023         18/1/2023           C49         414471         6395851         8/01/2023         18/1/2023           C50         414674         6395931         8/01/2023         18/1/2023           C51         414945         6395616         8/01/2023         18/1/2023           C52                                                                                                   | C36    | 425432  | 6391018  | 8/01/2023   | 18/1/2023   |
| C3942487163913508/01/202318/1/2023C4042469963915278/01/202318/1/2023C4141244963950318/01/202318/1/2023C4241266163950858/01/202318/1/2023C4341286463952178/01/202318/1/2023C4441324263955108/01/202318/1/2023C4541361963955108/01/202318/1/2023C4641385763954648/01/202318/1/2023C4741408463955098/01/202318/1/2023C4841422663956058/01/202318/1/2023C4941447163956908/01/202318/1/2023C5041467463959318/01/202318/1/2023C514151246396128/01/202318/1/2023C5241519463966198/01/202318/1/2023C5441521163966198/01/202318/1/2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C37    | 425222  | 6391127  | 8/01/2023   | 18/1/2023   |
| C4042469963915278/01/202318/1/2023C4141244963950318/01/202318/1/2023C4241266163950858/01/202318/1/2023C4341286463952178/01/202318/1/2023C4441324263954778/01/202318/1/2023C4541361963955108/01/202318/1/2023C4641385763954648/01/202318/1/2023C4741408463955098/01/202318/1/2023C4841422663956058/01/202318/1/2023C4941447163956908/01/202318/1/2023C5041467463955118/01/202318/1/2023C5141512463962168/01/202318/1/2023C5241512463964128/01/202318/1/2023C5441521163966198/01/202318/1/2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C38    | 425017  | 6391254  | 8/01/2023   | 18/1/2023   |
| C4141244963950318/01/202318/1/2023C4241266163950858/01/202318/1/2023C4341286463952178/01/202318/1/2023C4441324263954778/01/202318/1/2023C4541361963955108/01/202318/1/2023C4641385763954648/01/202318/1/2023C4741408463955098/01/202318/1/2023C4841422663956058/01/202318/1/2023C4941447163956908/01/202318/1/2023C5041467463958518/01/202318/1/2023C514152463962168/01/202318/1/2023C5241512463964128/01/202318/1/2023C5341521163966198/01/202318/1/2023C5441521163968248/01/202318/1/2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C39    | 424871  | 6391350  | 8/01/2023   | 18/1/2023   |
| C42         412661         6395085         8/01/2023         18/1/2023           C43         412864         6395217         8/01/2023         18/1/2023           C44         413242         6395477         8/01/2023         18/1/2023           C45         413619         6395510         8/01/2023         18/1/2023           C46         413857         6395464         8/01/2023         18/1/2023           C47         414084         6395509         8/01/2023         18/1/2023           C48         414226         6395605         8/01/2023         18/1/2023           C49         414471         6395609         8/01/2023         18/1/2023           C50         414674         6395851         8/01/2023         18/1/2023           C51         414945         6395931         8/01/2023         18/1/2023           C52         4115124         6396216         8/01/2023         18/1/2023           C53         415194         6396412         8/01/2023         18/1/2023           C54         415211         6396619         8/01/2023         18/1/2023           C54         415426         6396619         8/01/2023         18/1/2023                                                                                                                | C40    | 424699  | 6391527  | 8/01/2023   | 18/1/2023   |
| C4341286463952178/01/202318/1/2023C4441324263954778/01/202318/1/2023C4541361963955108/01/202318/1/2023C4641385763954648/01/202318/1/2023C4741408463955098/01/202318/1/2023C4841422663956058/01/202318/1/2023C4941447163956908/01/202318/1/2023C5041467463958518/01/202318/1/2023C5141494563959318/01/202318/1/2023C5241512463964128/01/202318/1/2023C5341521163966198/01/202318/1/2023C5441542663968248/01/202318/1/2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C41    | 412449  | 6395031  | 8/01/2023   | 18/1/2023   |
| C4441324263954778/01/202318/1/2023C4541361963955108/01/202318/1/2023C4641385763954648/01/202318/1/2023C4741408463955098/01/202318/1/2023C4841422663956058/01/202318/1/2023C4941447163956908/01/202318/1/2023C5041467463958518/01/202318/1/2023C5141494563959318/01/202318/1/2023C5241512463962168/01/202318/1/2023C5341521163966198/01/202318/1/2023C5441521463968248/01/202318/1/2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C42    | 412661  | 6395085  | 8/01/2023   | 18/1/2023   |
| C4541361963955108/01/202318/1/2023C4641385763954648/01/202318/1/2023C4741408463955098/01/202318/1/2023C4841422663956058/01/202318/1/2023C4941447163956908/01/202318/1/2023C5041467463958518/01/202318/1/2023C5141494563959318/01/202318/1/2023C5241512463962168/01/202318/1/2023C5341519463966198/01/202318/1/2023C5441521163966198/01/202318/1/2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C43    | 412864  | 6395217  | 8/01/2023   | 18/1/2023   |
| C4641385763954648/01/202318/1/2023C4741408463955098/01/202318/1/2023C4841422663956058/01/202318/1/2023C4941447163956908/01/202318/1/2023C5041467463958518/01/202318/1/2023C5141494563962168/01/202318/1/2023C5241512463964128/01/202318/1/2023C5341521163966198/01/202318/1/2023C5441542663968248/01/202318/1/2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C44    | 413242  | 6395477  | 8/01/2023   | 18/1/2023   |
| C4741408463955098/01/202318/1/2023C4841422663956058/01/202318/1/2023C4941447163956908/01/202318/1/2023C5041467463958518/01/202318/1/2023C5141494563959318/01/202318/1/2023C5241512463962168/01/202318/1/2023C5341519463964128/01/202318/1/2023C5441521163966198/01/202318/1/2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C45    | 413619  | 6395510  | 8/01/2023   | 18/1/2023   |
| C48         A14226         G395605         8/01/2023         18/1/2023           C49         A14471         G395690         8/01/2023         18/1/2023           C50         A14674         G395851         8/01/2023         18/1/2023           C51         A14945         G395931         8/01/2023         18/1/2023           C52         A115124         G396216         8/01/2023         18/1/2023           C53         A115194         G396412         8/01/2023         18/1/2023           C54         A15211         G396619         8/01/2023         18/1/2023           C55         A15426         G396824         8/01/2023         18/1/2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C46    | 413857  | 6395464  | 8/01/2023   | 18/1/2023   |
| C49         414471         6395690         8/01/2023         18/1/2023           C50         414674         6395851         8/01/2023         18/1/2023           C51         414945         6395931         8/01/2023         18/1/2023           C52         415124         6396216         8/01/2023         18/1/2023           C53         415194         6396412         8/01/2023         18/1/2023           C54         415211         6396619         8/01/2023         18/1/2023           C55         415426         6396824         8/01/2023         18/1/2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C47    | 414084  | 6395509  | 8/01/2023   | 18/1/2023   |
| C50         414674         6395851         8/01/2023         18/1/2023           C51         414945         6395931         8/01/2023         18/1/2023           C52         415124         6396216         8/01/2023         18/1/2023           C53         415194         6396412         8/01/2023         18/1/2023           C54         415211         6396619         8/01/2023         18/1/2023           C55         415426         6396824         8/01/2023         18/1/2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C48    | 414226  | 6395605  | 8/01/2023   | 18/1/2023   |
| C51         414945         6395931         8/01/2023         18/1/2023           C52         415124         6396216         8/01/2023         18/1/2023           C53         415194         6396412         8/01/2023         18/1/2023           C54         415211         6396824         8/01/2023         18/1/2023           C55         415426         6396824         8/01/2023         18/1/2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C49    | 414471  | 6395690  | 8/01/2023   | 18/1/2023   |
| C52         415124         6396216         8/01/2023         18/1/2023           C53         415194         6396412         8/01/2023         18/1/2023           C54         415211         6396619         8/01/2023         18/1/2023           C55         415426         6396824         8/01/2023         18/1/2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C50    | 414674  | 6395851  | 8/01/2023   | 18/1/2023   |
| C53       415194       6396412       8/01/2023       18/1/2023         C54       415211       6396619       8/01/2023       18/1/2023         C55       415426       6396824       8/01/2023       18/1/2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C51    | 414945  | 6395931  | 8/01/2023   | 18/1/2023   |
| C54       415211       6396619       8/01/2023       18/1/2023         C55       415426       6396824       8/01/2023       18/1/2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C52    | 415124  | 6396216  | 8/01/2023   | 18/1/2023   |
| <b>C55</b> 415426 6396824 8/01/2023 18/1/2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C53    | 415194  | 6396412  | 8/01/2023   | 18/1/2023   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C54    | 415211  | 6396619  | 8/01/2023   | 18/1/2023   |
| <b>C56</b> 415498 6397052 8/01/2023 18/1/2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C55    | 415426  | 6396824  | 8/01/2023   | 18/1/2023   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C56    | 415498  | 6397052  | 8/01/2023   | 18/1/2023   |



| Trap # | Easting | Northing | Date opened | Date closed |
|--------|---------|----------|-------------|-------------|
| C57    | 415691  | 6397143  | 8/01/2023   | 18/1/2023   |
| C58    | 415935  | 6397226  | 8/01/2023   | 18/1/2023   |
| C59    | 416172  | 6397331  | 8/01/2023   | 18/1/2023   |
| C60    | 416020  | 6399766  | 8/01/2023   | 18/1/2023   |
| C61    | 415891  | 6399999  | 8/01/2023   | 18/1/2023   |
| C62    | 415835  | 6400268  | 8/01/2023   | 18/1/2023   |
| C63    | 414068  | 6401144  | 8/01/2023   | 18/1/2023   |
| C64    | 413964  | 6401275  | 8/01/2023   | 18/1/2023   |
| C65    | 413850  | 6401540  | 8/01/2023   | 18/1/2023   |
| C66    | 413609  | 6401759  | 8/01/2023   | 18/1/2023   |
| C67    | 413469  | 6401915  | 8/01/2023   | 18/1/2023   |
| C68    | 413224  | 6402128  | 8/01/2023   | 18/1/2023   |
| C69    | 412842  | 6402153  | 8/01/2023   | 18/1/2023   |
| C70    | 412574  | 6402132  | 8/01/2023   | 18/1/2023   |
| C71    | 412126  | 6402114  | 8/01/2023   | 18/1/2023   |
| C72    | 412096  | 6402408  | 8/01/2023   | 18/1/2023   |
| C73    | 411880  | 6402575  | 8/01/2023   | 18/1/2023   |
| C74    | 411689  | 6402693  | 8/01/2023   | 18/1/2023   |
| C75    | 411580  | 6402835  | 8/01/2023   | 18/1/2023   |
| C76    | 411496  | 6403039  | 8/01/2023   | 18/1/2023   |
| C77    | 411555  | 6403436  | 8/01/2023   | 18/1/2023   |
| C78    | 411838  | 6403759  | 8/01/2023   | 18/1/2023   |
| C79    | 411896  | 6404549  | 8/01/2023   | 18/1/2023   |
| C80    | 411841  | 6404802  | 8/01/2023   | 18/1/2023   |

## Appendix C. Vertebrate Fauna Recorded in Biological Surveys in the Region

Baseline Monitoring of Rehabilitation Programs Alcoa's Bauxite Mining Areas





|                       |                                                          | Surveys A                                          |          |        |          | С        |      |      |          |          |          |      | D        |      | E       |       | F |
|-----------------------|----------------------------------------------------------|----------------------------------------------------|----------|--------|----------|----------|------|------|----------|----------|----------|------|----------|------|---------|-------|---|
|                       |                                                          |                                                    |          |        |          |          |      |      |          |          |          |      |          |      | vn      |       |   |
|                       | - ·                                                      |                                                    |          | South  | orth     | Site 3   | te 6 | te 4 | te 7     | te 5     | te 9     | te 8 | ot 5     | ot 6 | Jnknown | Lease |   |
| Family                | Species                                                  | Common name                                        |          | Ň      | Ž        | Si       | Si   | Si   | Si       | Si       | Si       | Si   | 4        | Ы    | ō       | Le    |   |
| Amphibians            | I la la iananya hanyanaaya                               | Lipping From                                       | х        |        |          |          |      |      |          |          |          |      |          |      |         |       |   |
| Limnodynastidae       | Heleioporus barycragus<br>Heleioporus eyrei              | Hooting Frog<br>Moaning Frog                       | X        | 2      |          |          |      |      |          |          |          |      |          |      |         |       |   |
|                       | Heleioporus inornatus                                    | Whooping Frog                                      | X        | 2      |          | 1        | 1    |      |          |          |          |      |          |      |         |       |   |
|                       | Limnodynastes dorsalis                                   | Western Banjo Frog                                 | Х        |        |          | -        | -    | 1    |          |          |          |      |          |      |         |       |   |
|                       | Neobatrachus pelobatoides                                | Humming Frog                                       | Х        |        |          |          |      |      |          |          |          |      |          |      |         |       |   |
| Myobatrachidae        | Crinia georgiana                                         | Quacking Frog                                      | Х        | 2      | 2        | 5        | 4    | 3    | 4        | 1        |          |      | 2        |      | -       |       |   |
|                       | Crinia glauerti                                          | Glauert's Frog                                     | Х        |        | 2        | 2        |      |      |          |          |          |      |          |      | 2       |       |   |
|                       | Crinia insignifera<br>Crinia pseudinsignifera            | Sin-bearing Froglet<br>Bleating Froglet            | X<br>X   |        | 2        |          |      |      |          |          |          |      |          |      |         |       |   |
|                       | Geocrinia leai                                           | Lea's Frog                                         | X        | -      | 2        |          | 8    |      |          | 5        |          |      |          |      | 1       |       |   |
|                       | Pseudophryne quentheri                                   | Gunther's Toadlet                                  | Х        | 2      |          |          | Ŭ    |      |          | 5        |          |      |          |      |         |       |   |
| Pelodryadidae         | Litoria adelaidensis                                     | Slender Tree Frog                                  | Х        | 2      | 2        |          |      |      |          |          |          |      |          |      | 1       |       |   |
|                       | Litoria moorei                                           | Motorbike Frog                                     |          |        | 2        |          |      |      |          |          |          |      |          |      |         |       |   |
| Reptiles              |                                                          |                                                    |          |        |          |          |      |      |          |          |          |      |          |      |         |       |   |
| Agamidae              | Ctenophorus ornatus                                      | Ornate Crevice Dragon                              | Х        | 2      | 2        |          |      |      |          |          | 1        |      |          |      |         |       |   |
|                       | Pogona minor                                             | Western Bearded Dragon                             | Х        | 2      | 2        |          |      |      |          |          |          |      |          |      |         |       |   |
| Carphodactylidae      | Underwoodisaurus milii                                   | Barking Gecko                                      | Х        |        |          | <u> </u> |      |      | <u> </u> | <u> </u> | <u> </u> |      | <u> </u> |      |         |       |   |
| Diplodactylidae       | Diplodactylus lateroides<br>Diplodactylus polyophthalmus | Speckled Stone Gecko<br>Spotted Sand Plain Gecko   | X<br>X   | 2      | 2        | -        |      |      |          |          |          |      |          |      |         |       |   |
| Diplodactylidae       | Oedura marmorata                                         | Marbled Velvet Gecko                               | ^        | 2      | 2        |          |      |      |          |          |          |      |          |      |         |       |   |
| Elapidae              | Acanthophis antarcticus                                  | Southern Death Adder                               | х        | 2      | 2        | -        |      |      |          |          |          |      |          |      |         |       |   |
| Liupidue              | Notechis scutatus                                        | Tiger Snake                                        | Х        | 2      | 2        | 1        |      |      |          |          |          |      |          |      | 1       |       |   |
|                       | Suta gouldii                                             | Gould's Snake                                      | Х        | 2      | 2        |          |      |      |          |          |          |      |          |      |         |       |   |
|                       | Suta nigriceps                                           | Short-tailed Snake                                 | Х        |        | 2        |          |      |      |          |          |          |      |          |      |         |       |   |
|                       | Pseudonaja affinis                                       | Dugite                                             | Х        | _      | 2        |          |      |      |          |          |          |      |          |      |         |       |   |
| Gekkonidae            | Christinus marmoratus                                    | Marbled Gecko                                      | Х        |        |          |          |      |      |          |          |          |      |          |      |         |       |   |
| Pygopodidao           | Gehyra variegata<br>Apracia parapulchella                | Variegated Gehyra<br>Pink-tailed Worm-lizard       | Х        |        |          | 1        |      |      |          |          |          |      |          |      |         |       |   |
| Pygopodidae           | Aprasia parapulchella<br>Aprasia pulchella               | Pretty Worm-lizard                                 | х        | 2      | 2        | 1        |      |      |          |          |          |      |          |      |         |       |   |
|                       | Aprasia repens                                           | Southwest Sandplain Worm Lizard                    | Х        | -      | -        | 1        |      |      |          |          |          |      |          |      |         |       |   |
| -                     | Lialis burtonis                                          | Burton's Legless Lizard                            | Х        | 2      | 2        |          |      |      |          |          |          |      |          |      |         |       |   |
|                       | Pygopus lepidopodus                                      | Common Scaly-foot                                  |          | 2      |          |          |      |      |          |          |          |      |          |      |         |       |   |
| Pythonidae            | Morelia spilota                                          | Carpet Python                                      | Х        |        |          |          |      |      |          |          |          |      |          |      |         |       |   |
| Scincidae             | Acritoscincus trilineatus                                | Western Three-lined Skink                          | Х        | 2      | 2        |          |      |      |          |          |          |      |          | 6    | _       |       |   |
|                       | Cryptoblepharus buchananii<br>Ctenotus delli             | Buchanan's Snake-eyed Skink<br>Dell's Ctenotus     | X<br>X   | 2      | 2<br>2   |          |      |      |          | 1        |          |      | 6        | 6    | 1       |       |   |
|                       | Ctenotus impar                                           | Odd-stripped Ctenotus                              | ^        | 2<br>2 | 2        |          |      |      |          |          |          |      | 0        |      |         |       |   |
|                       | Ctenotus labillardieri                                   | Common South-west Ctenotus                         | х        | 2      | 2        |          |      | 2    | 1        |          |          |      |          |      | 2       |       |   |
|                       | Egernia kingii                                           | King's Skink                                       | Х        | 2      | 2        |          | 2    | -    |          |          |          |      |          |      | _       |       |   |
|                       | Egernia napoleonis                                       | Southwestern Crevice Skink                         | Х        | 2      | 2        | 1        | 1    | 3    |          |          |          |      |          |      | 2       |       |   |
|                       | Hemiergis initialis                                      | South-western Earless Skink                        | Х        | 2      | 2        |          |      | 4    | 2        |          |          |      | 6        |      | 1       |       |   |
|                       | Lerista distinguenda                                     | South-western Orange-tailed Slider                 | Х        | 2      | 2        |          |      |      | 2        |          |          |      | 2        |      |         |       |   |
|                       | Lerista elegans                                          | West Coast Four-toed Lerista                       | Х        | -      |          |          |      |      |          |          |          |      |          |      |         |       |   |
|                       | Liopholis pulchra<br>Lissolepis luctuosa                 | South-western Rock-skink<br>Western Mourning Skink | X<br>X   | 2      | 2        |          |      |      |          |          |          |      |          |      |         |       |   |
|                       | Menetia greyii                                           | Common Dwarf Skink                                 | X        | 2      | 2        |          |      |      |          |          |          |      |          |      | 1       |       |   |
|                       | Morethia obscura                                         | Shrubland Pale-flecked Morethia                    | Х        | 2      | 2        | 2        |      | 3    | 5        |          |          |      | 4        |      | 1       |       |   |
|                       | Tiliqua rugosa                                           | Bobtail                                            | Х        | 2      | 2        |          | 2    |      |          |          |          | 3    |          |      |         |       |   |
| Typhlopidae           | Anilios australis                                        | Austral Blind Snake                                | Х        | 2      |          |          |      |      |          |          |          |      |          |      |         |       |   |
| Varanidae             | Varanus gouldii                                          | Gould's Goanna                                     | Х        | 2      |          |          |      |      |          |          |          |      |          |      |         |       |   |
|                       | Varanus rosenbergi                                       | Heath Monitor                                      |          |        |          |          | 1    |      |          |          |          |      |          |      |         |       |   |
| Mammals               |                                                          |                                                    |          |        |          |          |      |      |          |          |          |      |          |      |         |       |   |
| Tachyglossidae        | Tachyglossus aculeatus                                   | Short-beaked Echidna                               | -        | 2      | 2        | -        |      |      |          |          |          |      |          |      | 4       |       |   |
| Suidae<br>Capidae     | Sus scrofa                                               | Pig<br>Rod Fox                                     | $\vdash$ | 2      | $\vdash$ | -        |      |      | <u> </u> | <u> </u> | <u> </u> |      |          |      | 2       |       |   |
| Canidae<br>Dasyuridae | Vulpes vulpes<br>Sminthopsis fulinginosa                 | Red Fox<br>Grey-bellied Dunnart                    | х        |        | +        | -        |      |      | -        | -        | -        |      |          |      | 1       |       |   |
| Molossidae            | Austronomus australis                                    | White-striped Freetail Bat                         | ^        | 2      | 2        | 1        |      |      |          |          |          |      |          |      |         |       |   |
|                       | Mormopterus planiceps                                    | Southern Free-tail Bat                             | Х        | 2      | Ē        | 1        |      |      |          |          |          |      |          |      |         |       |   |
| Vespertilionidae      | Chalinolobus gouldii                                     | Gould's Wattled Bat                                | Х        | 2      |          |          |      |      |          |          |          |      |          |      |         |       |   |
|                       | Chalinolobus morio                                       | Chocolate Wattled Bat                              | Х        |        | 2        |          |      |      |          |          |          |      |          |      |         |       |   |
|                       | Falsistrellus mackenziei                                 | Western False Pipistrelle                          | <u> </u> | -      | <u> </u> | -        |      |      |          |          |          |      |          |      |         |       | 2 |
|                       | Nyctophilus geoffroyi                                    | Lesser Long-eared Bat                              | Х        | 2      |          | 1        |      | I    |          |          |          |      |          |      |         |       |   |



|               |                       | Surve                     | ys A | В     |       | С      |        |        |        |        |        |        | D      |        | E       |       | F |
|---------------|-----------------------|---------------------------|------|-------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|-------|---|
| Family        | Species               | Common name               |      | South | North | Site 3 | Site 6 | Site 4 | Site 7 | Site 5 | Site 9 | Site 8 | Plot 5 | Plot 6 | Unknown | Lease |   |
|               | Nyctophilus holtorum  | Holt's Long-eared Bat     | Х    |       | 2     |        |        |        |        |        |        |        |        |        |         |       |   |
|               | Nyctophilus major     | Greater Long-eared Bat    | х    |       |       |        |        |        |        |        |        |        |        |        |         |       |   |
|               | Vespadelus regulus    | Southern Forest Bat       | Х    | 2     | 2     |        |        |        |        |        |        |        |        |        |         | 1     |   |
| Dasyuridae    | Antechinus flavipes   | Yellow-footed Antechinus  | Х    | 2     | 2     |        |        |        | 2      |        |        |        | 50     | 58     |         |       |   |
|               | Dasyurus geoffroii    | Chuditch                  | Х    |       |       |        |        |        |        |        |        |        |        |        |         |       |   |
|               | Sminthopsis gilberti  | Gilbert's Dunnart         | Х    | 2     |       |        |        |        |        |        |        |        |        |        |         |       |   |
| Burramyidae   | Cercartetus concinnus | Southwestern Pygmy Possum | Х    |       |       |        |        |        |        |        |        |        |        |        |         |       |   |
| Macropodidae  | Macropus fuliginosus  | Western Grey Kangaroo     | Х    | 2     | 2     |        |        |        |        |        |        |        |        |        | 6       | 1     |   |
|               | Notamacropus irma     | Western Brush Wallaby     | Х    | 2     | 2     |        |        |        |        |        |        |        |        |        | 1       | 1     | 2 |
|               | Setonix brachyurus    | Quokka                    | Х    |       |       |        |        |        |        |        |        |        |        |        |         | 1     |   |
| Phalangeridae | Trichosurus vulpecula | Common Brushtail Possum   |      |       |       |        |        |        |        |        |        |        | 4      | 6      |         |       |   |
| Tarsipedidae  | Tarsipes rostratus    | Honey Possum              | Х    |       |       |        |        |        |        |        |        |        |        |        |         |       |   |
| Leporidae     | Oryctolagus cuniculus | Rabbit                    | Х    |       |       |        |        |        |        |        |        |        |        |        | 2       |       |   |
| Peramelidae   | Isoodon fusciventer   | Quenda                    | Х    | 2     | 2     |        |        |        |        |        |        |        | 6      | 2      | 4       |       | 2 |
| Muridae       | Mus musculus          | House Mouse               |      | 2     | 2     |        |        |        |        |        |        |        |        |        |         |       |   |
|               | Rattus rattus         | Black Rat                 | Х    |       |       | 1      |        |        |        |        |        | 1      |        |        |         | 1     |   |

A Atlas of Living Australia

B Dunlop, J.N. and Associates and Ninox Wildlife Consulting (1987) A Fauna Assessment of Four Water Supply Sources in the Darling Ranges. Raised Mundaring Dam, Raised Canning Dam, South Canning Dam, North Dandalup Dam. Unpublished report for the Water Authority of Western Australia, Perth.

C Wardell-Johnson, G. (1982) A Vertebrate Fauna Survey of the Western High Rainfall Forest of the Serpentine Area. Unpublished report for Department of Conservation and Land Management, Perth.

D Kabay, D. (2009) Monitoring for *Wungong Catchment Forest Thinning Project KPII Fauna*. Unpublished report for Water Corporation, Perth.

E Ninox Wildlife Consulting (1989) A Vegetation and Vertebrate Fauna Assessment of Seven Proposed Mining Areas near Jarrahdale, Western Australia. Unpublished report for Metro Brick, Perth

F Ecologia Environment (2010) Pipes and Pump Stations Joint Venture CW00803 Dwellingup New Source Targeted Survey for Mammals of Conservation Significance. Unpublished report for the Water Corporation, Perth.

